A

NASA Contractor Report 191608 —
43605
/B8P
Specification and Verification of
Gate-Level VHDL Models of
Synchronous and Asynchronous Circuits
David M. Russinoff
Computational Logic, Inc., Austin, Texas
(NASA-CR-191608) SPECIFICATION AND N95-22830

VERIFICATION OF GATE-LEVEL VHDL

MODELS OF SYNCHRONQCUS AND

ASYNCHRONQUS CIRCUITS Final Report Unclas
(Computational Logic) 138 p

G3/62 0043605

Contract NAS1-18878

January 1995

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

i i 1l

Wi 1

Al

<

Abstract

We present a mathematical definition of a hardware description language (HDL)
that admits a semantics-preserving translation to a subset of VHDL. Our HDL
includes the basic VHDL propagation delay mechanisms and gate-level circuit de-
scriptions. We also develop formal procedures for deriving and verifying concise
behavioral specifications of combinational and sequential devices. The HDL and
the specification procedures have been formally encoded in the computational logic
of Boyer and Moore, which provides a LISP implementation as well as a facility
for mechanical proof-checking. As an application, we design, specify, and verify a
circuit that achieves asynchronous communication by means of the biphase mark
protocol.

Contents

1 Introduction 1
Ll Hardware Modeling. 1
1.2 Behavioral Specifications, 77 2
1.3 Asynchronous Communication 7 3
14 Nqthm Formalization. ''''tooce 3
2 Definition of the Language 4
21 Sexpressions 000 4
22 Waveforms] it 5
2.3 Behavioral Modules 0] Tt 8
24 Structural Modules, Tt 10
25 Simulation. 0 DT 13
3 Specification of Synchronous Circuits 17
31 Combinational Modules 17
32 Sequential Modules /[77ttt 20
3.3 Sequential Values 71Tttt 21
34 Behaviorofats..... T T T 24
35 Parameters ... T 25
36 The Main Theorem, [[Tttt 27
4 Asynchronous Communication 30
4.1 Smooth and Quasi-Smooth Waveforms 30
4.2 Describing Output as Input 31
4.3 Eliminating Metastability 77 32
44 The Main Theorem, [7Tttt 36
5 Biphase Mark 37
Dl Sending ... 37
52 Receiving T 38
53 Moore's Theorem [[1Tttt 39
54 Basic Components [Tt 39
06 TheSender ... i 43
36 TheReceiver [1o 46
5.7 The Main Theorem,, [[/ 7Tttt 50
6 NASA'’s Reliable Computing Platform 51
Appendix: Nqthm Formalization 54
A Language Definition 54
B Properties of the Simulator 7 68
C Synchronous Sequential Circuits 81
iii

PRECEDING PAGE BLANK NOT FILWMED

1 Introduction

NASA Langley Research Center has conducted a research program in formal methods,
focusing on the development of a practical verification methodology for fault-tolerant
digital flight-control systems. Computational Logic, Inc. (CLI) is one of several organi-
zations that have participated in this program. The first phase of the program addressed
the application of formal methods to various key design problems. During this phase,
CLI produced results in three areas:

(1) The formal design and verification of a circuit that achieves Byzantine agreement
among four synchronous processors [1];

(2) The mechanical verification of the Interactive Convergence clock synchronization
algorithm [22];

(3) The formalization of the Biphase Mark protocol for asynchronous communica-
tion [15].

The second phase of the program is concerned with exploring the integration of these
results in the design of a verified reliable computing platform (RCP) [9, 10] for real-time
control. This paper is a report on CLI's effort during this phase.

1.1 Hardware Modeling

A prerequisite for the realization of NASA's goals is a hardware description language
(HDL) that is both (a) amenable to formal verification and (b) suitable for representing
asynchronous systems of communicating processors. Much of our effort has been devoted
to the development of a language that meets these requirements.

Our previous research in hardware modeling and verification has been based on an
HDL developed at CLI by Brock and Hunt [5]. The utility of the Brock-Hunt HDL as a
verification tool, as demonstrated in the verification of the FM9001 microprocessor [4],
stems from the simplicity of its semantics. All circuits designed in this language are
assumed to be driven by an implicit global clock. Simulation of a circuit amounts to
a computation of a sequence of states corresponding to clock cycles. Thus, no explicit
representation of time or propagation delays is provided, so that the class of circuits
that can be satisfactorily modeled is limited. In particular, the language is unsuitable
for any application involving asynchrony.

Commercial event-driven simulation languages provide for a broader range of hard-
ware behaviors. VHDL [11], in particular, has gained wide acceptance in the hardware
design community as a validation tool. Since the limitations of simulation as a method
of validation are well known, a formal verification system based on VHDL would have
clear practical value. Unfortunately, like most Programming languages in common use,
the semantics of VHDL are complicated and obscure. There have been various attempts
to formalize these semantics [2, 8, 19, 21], but none of these have provided an effective
verification methodology.

We have undertaken, therefore, to identify a core subset of VHDL that is small
enough to admit a clear and simple semantic definition, providing for correctness proofs
of comprehensive behavioral specifications, but extensive enough to provide realistic

Lot e b0l

IR

gate-level descriptions of the circuits involved in our inteneded application. Thus, we
have avoided complicated language constructs and focused on the VHDL models of time,
signal behavior, propagation delay, and event-driven simulation.

The definition of our language is presented in Section 2. Its syntax, based on the
S-ezpressions of LISP (subsection 2.1), is more abstract and amenable to direct formal
analysis than the standard VHDL syntax [11]. The correspondence between the two
is straightforward—a simple translator from our language to VHDL is described else-
where [12]. Here, we concentrate on a mathematical treatment of the abstract language.
This begins in Subsection 2.2, where we present the notions of time and waveform, on
which the semantics of the language are based. We also define two waveform transforma-
tions that embody the main propagation delay modes of VHDL, transport and inertial,
and derive their fundamental properties.

In Subsection 2.3, we describe the form and execution of behavioral modules, which
are used to model gates and also to specify abstractly the behavior of circuits. Subsec-
tion 2.4 discusses structural modules, which provide hierarchical descriptions of circuits
in terms of connections among their components. For the purpose of illustration, we
exhibit the actual VHDL code generated by the translator for modules of both types.

The semantics of the language are given by an interpreter function, sim, which
produces a list of waveforms that represent the output generated by a module in response
to a given list of input waveforms. The definition of sim is presented in Subsection 2.5,
along with a number of basic results pertaining to its behavior.

1.2 Behavioral Specifications

During the course of the design process, a typical hardware device is modeled at various
levels of abstraction. An initial abstract model, derived from a given behavioral spec-
ification, is gradually refined to produce a concrete model, such as a network of gates,
which is more amenable to implementation. A design is validated by demonstrating the
equivalence of these representations.

This is most commonly effected through simulation. In VHDL, a circuit component
may be associated with various alternative architectures, which describe the component
at different levels of abstraction. The equivalence of architectures may be confirmed
through comparative simulations. Once a sufficiently low-level VHDL architecture has
been derived and validated in this manner, it may be implemented directly.

We propose to replace simulation with formal verification. In our VHDL subset,
circuit components are represented concretely at the gate level. In Section 3, we shall
describe a methodology for deriving abstract behavioral specifications and proving that
they are satisfied by these gate-level models.

In Subsection 3.1, we consider the relatively simple class of combinational circuits,
i.e., circuits that are free of cyclic paths. Each output of such a circuit is naturally
associated with a certain Boolean function of the inputs. This association is commonly
stated as follows: the value of an output at any time may be computed by applying the
associated function to the current input values. Obviously, this description is valid only
with respect to hardware models that ignore propagation delay. We shall derive a more
accurate specification of combinational circuits and verify its validity in the context of
our model.

The analysis of sequential circuits is considerably more complicated. While the ab-
stract sequential machine model is well understood, its precise relationship with the
actual behavior of the hardware that it is intended to describe is not. The sequential
machine characterization is traditionally based on the extravagant assumption that sig-
nal values may change only at discrete points occurring at regular time intervals. This
allows the behavior of a signal to be represented abstractly as a sequence of values. The
value of an output over a given interval is then expressed as a function of the sequence
of past input values. Of course, the underlying model again must disregard propaga-
tion delay. This approximation seems questionable, since the functionality of the basic
state-holding elements generally depends critically on the presence of delays.

In Subsection 3.2, we define a class of sequential circuits that may be characterized
as synchronous resettable rising-edge-triggered devices. The basic memory element em-
ployed in their construction is a resettable clocked d-flip-flop, composed of nand gates,
described in Subsection 3.3. In Subsections 3.4-3.5, we, establish a procedure for deriv-
ing high-level sequential machine descriptions for the class of circuits. In Subsection 3.6,
we prove a theorem that gives a precise statement of the relationship between the se-
quential machine description of a circuit and its behavior as defined by our gate-level
semantics.

1.3 Asynchronous Communication

The utility of our approach with respect ot the NASA RCP depends on our ability to
model asynchronous communication between individually synchronous processors. This
problem is addressed in Section 4. We present a solution based on Moore’s model of
asynchrony [15]. After reviewing this model, we prove a theorem that demonstrates its
applicability to a class of circuits defined in our language. Each of these circuits consists
of a pair of sequential circuits that are driven by independent clocks of approximately
equal periods. They communicate with the aid of a latch that serves to smooth the
sender’s output, allowing it to be read by the receiver.

In Section 5, we present a concrete definition of such a circuit that achieves asyn-
chronous communication by means of the well known biphase mark protocol [18]. The
circuit design and the proof of its correctness are both based on [15].

1.4 Ngqthm Formalization

The decision to base our language on S-expressions was motivated by our desire to
support its analysis with the use of the Nqthm system of Boyer and Moore [3]. Nqthm
is based on a constructive formal logic for which the intended model is the domain of
-expressions. Thus, there is a correspondence between the formulas of this logic and
informal propositions about S-expressions. A user of the system may extend the logic by
adding axioms that correspond to definitions of computable functions over this domain.
Mechanical support for the Nqthm logic is provided by a LISP implementation that
includes (1) an evaluator that computes values of functions defined in the logic, and (2)a
theorem prover that may be used to derive logical consequences of the axioms. Since
these theorems may be interpreted as propositions about functions of S-expressions, the
prover may be used to verify (formally and mechanically) the correctness of properties of
these functions that have been derived by traditional (informal) mathematical methods.

All of the functions involved in the construction of our language, which we describe
informally, meet the computability requirement for encoding as Nqthm definitions [3].
In fact, we have developed an Nqthm theory, presented in Appendix A, that formalizes
these functions, including the module recognizers that form the syntax of the language
and the interpreter that constitutes its semantics. Thus, we have a complete LISP
implementation of our language, provided by the Nqthm evaluator.

Moreover, all of our results, which are justified by informal (but mathematically
rigorous) proofs, correspond in a natural way to Nqthm formulas. Thus, these proofs
could, in principle, be checked mechanically by the Nqthm prover, thereby increasing
our confidence in their validity at the the expense of some effort. At the time of this
writing, mechanical proofs have been generated for most of the results of Section 2 (see
Appendix B), as well as most of the results pertaining to specific circuits, including the
components of the biphase mark implementation (Appendix C).

Another benefit of the Nqthm formalization is that it provides a basis for a LISP
implementation of the translator from our syntax to that of VHDL [12]. This potentially
allows commercial VHDL synthesis tools to be used to implement our programs in
silicon. As another application of more immediate interest, we have actually executed
(the translations of) many of our programs using the Vantage VHDL simulator. For
the simulations that we have tested, which include all of those described herein, the
Vantage results were identical to those produced by our LISP-based interpreter. Since
the official description of VHDL [11] is often ambiguous, this offers useful evidence that
we have achieved our goal of semantically capturing the VHDL subset in which we are
interested.

2 Definition of the Language

2.1 S-expressions

Along with the set N of natural numbers, we posit a set B = {7, 7} and an infinite set
L, the elements of which are called Boolean and literal atoms, respectively. These three
sets are assumed to be pairwise disjoint, and any element of their union is called an
atom. We further assume that no atom is an ordered pair of atoms, and we recursively
define an S-expression to be an atom or an ordered pair of S-expressions. S denotes the
set of all S-expressions. Three basic operations on S are defined: If z = (z,y) € S x §,
then car(z) = z, cdr(z) =y, and cons(z,y) = z.

We also assume the existence of various distinct literal atoms, which we shall mention
as we proceed. Among these is the atom INFINITY. We define a generalized number to
be an atom that is either INFINITY or an element of N. Both the order relation and the
addition operation on N are extended to the set of generalized numbers in the natural
manner: for any n € N, n < INFINITY and n + INFINITY = INFINITY +n = INFINITY.

A listis an S-expression that is either the literal atom NIL or an ordered pair z € Sx 8§
such that cdr(z) is a list. The list NIL is denoted alternatively as (), and a non-NIL list
z is denoted as (a; ... an), where a; = car(z) and (a2 ... a,) denotes cdr(z). In this
case, n is the length of z, and ay,...,a, are its members. For 1 €1 < n, nth(i,z) is
defined to be a;. A list is a bit vector if each of its members is a Boolean atom.

A function f : B® — B is an n-ary Boolean function. The following Boolean func-

tions are called elementary: the O-ary functions t0 and f0, with values 7 and F , Te-
spectively; the unary function notl; the binary functions and®, or2, nand?, nor2, ror2,
the ternary functions and$, or3, nand3, nor3, rord; the quaternary functions andy, or{,
nend4, nord, and zord; and the quinary functions and5, ors, nand5, nors, and zors.
The definitions of these functions are assumed to be understood.

For the purpose of encoding Boolean function calls, we also assume that each ele-
mentary Boolean function f is associated with a unique literal atom £ that is denoted
with the same name as f. Thus, the function notl is associated with the literal atom
notl = NOT1. We define a Boolean term over a list L of distinct literal atoms to be an

-expression that is either (a) a member of L, or (b) alist (fri ... 7,), where f is an
n-ary elementary Boolean function and each i is an Boolean term over L.

Let L = (31 ... si) be a list of distinct literal atoms and let V = (vp ... v) bea
bit vector. Then pairlist(L, V) is the list 4 = ((s1,v1) -.. (8k, %)), which is called an
association list. If 7 is a Boolean term over L, then we define eval(r, A) to be (a) v;, if
T =s;, or (b) f(eval(ry, A),...,eval(r,, A)), if r = (fr ... 7).

2.2 Waveforms

Let T be the quotient set determined by the equivalence relation on N U NxN that
identifies each n € N with the pair (n,0) € N x N. An element of T is called a
time object. Thus, any element of N or NxN denotes a unique time object, with the
understanding that for n € N, n and (n,0) denote the same object.

The motivation for this ordered-pair model of time is the need to provide records
of the behavior of zero-delay devices. The components of a time object (n, k) may be
interpreted as follows: n represents the number of time units, which we arbitrarily take
to be picoseconds, that have elapsed since the start of a simulation; k represents the
number of successive delta cycles that have occurred during the current time unit.

Thus, T is ordered according to the lexicographic order on NxN, which is consistent
with the natural ordering of N: for time objects t; = (ny,k;) and ¢t; = (n2,ka), ty < tp
iff ny < ny and either ny < ny or k1 < k3. Thus the minimum element of T is the
time object that is denoted alternatively as 0 or (0,0). For ti.t2 € T, the interval
{t € T:t; <t <t;} will be denoted as [t1,t2).

An event is an ordered pair e = (v,t), where v = value(e) € B and t = time(e) € T.
Let w = ((vn,t,) ... (vo,to)) be a list of events. If ti>ti—yand v #vi_y for 0 <i < n,
and tg = 0, then w is a waveform. Note that according to this definition, successive
events of a waveform must have different values; in VHDL terminology, all transactions
are events. This restriction is consistent with the absence of implicit signals from our
subset: since there is no way to detect transactions other than events (e.g., by means of
the ACTIVE and TRANSACTION attributes), they may be ignored.

We define 4 : T — B by w(t) = v;, Where j is the greatest value of i satisfying
t: < t; (1) is called the value of w at t. Note that w, = b, iff wy =wy. If t = ¢;, then
we shall say that w has a new value at t. We also define the history of w relative to t to
be the waveform hist(w,t) = ((vj,t5) ... (vo,0)).

A packet is a list of waveforms, p = (w; ... wp), n > 0. Forany t € T, the value ofp
at t is the bit vector p(t) = (i (¢) ... Wa(t)); p has a new value at ¢t if any member of p
does. The history of p relative to ¢ is the packet hist(p,t) = (hist(w,,¢) ... hist(wn, t)).

The behavior of each signal occurring in a circuit will be modeled as a waveform.
During the course of a simulation, these waveforms are updated at various times. When
a waveform is considered in the context of a current time 2o, each of its members e is
viewed as a past, current, or future event, according to the relationship between time(e)
and to. Past and present events are immutable, but future events are subject to deletion
as they are superceded by newly scheduled events, as described below.

Whenever a new event e is to be scheduled for a signal, time(e) is computed from
the current time to = (n, k) and a delay d € N that is associated with the signal, by
means of an addition operation from TxN to T, defined as follows:

[(n+d,0) fd#0
("'k)@d’{ (nk+1) ifd=0.

Thus, regardless of delay, when a new event e = (v,t,) is scheduled on a waveform
w at time to, we have t; < t,. The scheduling may be performed by either of two
procedures, corresponding to the transport and inertial delay modes of VHDL. Note that
the definitions of these procedures are somewhat different from the processes described
in[11], due to our restricted notion of waveform.

Transport delay is the simpler of the two: each event (v/, t') with ¢/ > t, is deleted
from w, and e is then consed to the result, unless that result already has value v at
t,. The updated waveform w' is computed as the value of transport(w,v,t,), which is
defined recursively as follows:

(1) Let car(w) = (vy.ts). ¢ty > t,, then w' = transport{cdr(w), v, t,); otherwise:
(2) If vy = v, then w' = w; otherwise:
(3) w' = cons((v,ty), w).

Alternatively, w’ may be described in terms of the function W'

arpy U ift>t,
w(t)_{u‘)(t) ift <ty

Inertial delay is somewhat more complicated: every event (v, ') with t' > to is
deleted from w, and if W(tg) # v, then a single event with value v is consed to the
result. If W(t,) = v, then the time of this event is the time of the last event of w
that precedes t,; otherwise, it is t,. Note that this procedure takes the current time
to as an additional argument, and requires that g < t,. The recursive definition of
w' = inertial(w, v, o, ty) is given as follows:

(1) Let @ = hist(w,to). If w(to) = v, then w' = 0; otherwise:
(2) Let car(w) = (vy,tf). Ity > ¢t,, thenw' = inertial(cdr(w), v, to, tv); otherwise:
(3) If vy = v, then w’ = cons((v,ty), ®); otherwise:

(4) w' = cons((v,tv), ®).

— —
(a)

— —
(b)

— —_—
©

Figure 1: Transport and Inertial Delay

Transport mode is often used to model wires (along which pulses of arbitrarily small
duration are propagated to the delayed signal), while gate outputs are generally modeled
by inertial delay. The difference between the two modes is illustrated in Fig. 1. The
diagram labelled (a) represents the waveform

w=((T,9) (F,8)(T,6) (F,5) (T,3) (F,1) (T,0)).

The results of updating w at time 1 by scheduling an event with time 7 and value 7,in
both transport and inertial modes, are

transport(w, T,7) = ((T,6) (F,5) (T,3) (F,1) (T, 0))

and
inertial(w, 7, 1,,7) = ((T,6) (F,1) (7,0)),

as shown in (b) and (c), respectively.

The following is a useful summary of both propagation functions. Each result may
be proved by a straightforward induction. Note that (b) is consistent with our earlier
informal observation that past and present events are immutable;

Lemma 2.1 Let w be a waveform, let ty, ¢y, and t, be natural numbers with to < ty,
and let w' be either transport(w,v,t,) or inertial(w, v, to,t,). Then

(a) W'(t) = v for t > t,;

(b) @'(t) = @(t) fort < to;

(c)ifty <tg <ty <t, and W(t) = u for t € [t),ts), then W'(t) =u fort € [t;,t,).

A similar induction shows that both procedures are “idempotent” in the following
sense:

Lemma 2.2 Ifw is a waveform and tg, tv,ty, t, are natural numbers with to < ty,
to < t,, to <th, and t, < t,, then

(a) transport(transport(w, v, t,), v, t,) = transport(w, v, ty);

(b) inertial(inertial(w, v, tg, ty),v,tg,t,) = inertial(w,v, ty, t,).

2.3 Behavioral Modules

The simplest programs of our language are the behavioral modules, which contain ex-
plicit information concerning propagation delay and the functional dependence of out-

puts on inputs.
A behavioral module is a list M = (BEHAVI O T P D), where

(1) BEHAV is the identifying literal atom for modules of this type:
(2) I=I(M) = (ry ... Tm) is a list of literal atoms called the inputs of M;
(3) O =0(M)=(s1 ... 8) is a list of literal atoms called the outputs of M;

(4) T = T(M) = (m ... Ta) is a list of elementary Boolean terms over I(M), called
the output terms of M;

(5) D=D(M)=(dy ... dn) is alist of natural numbers, the delays of M;

(6) P=P(M)=(p1 ... pn) is a list of literal atoms called the propagation modes of
M, each of which is either TRANSPORT or INERTIAL.

The members of the list (r1 ... 7m 81 ... Sa) are required to be distinct and are called
the signals of M.

Note that each output is associated with a term, a mode, and a delay. If every term
is either an atom or a list of atoms, (i.e., contains no nested function calls), then A is
primitive.

Gates are generally modeled as primitive modules with inertial delays. For example,
we represent a simple 2-input nand gate as the primitive module nand2:

(BEHAV (A B) (C) ((NAND2 A B)) (2000) (INERTIAL))

We may define a similar behavioral module, with n inputs and 1 output, corresponding
to each elementary n-ary Boolean function, arbitrarily taking the delay to be 2000 in
each case. In the sequel, we shall refer to these primitive modules without explicitly

listing their definitions.
For the purpose of illustration, the following primitive module m is defined to have
one output of each propagation mode:

(BEHAV (A B) (C D) ({NAND2 A B) (NOT1 A)) (2000 5000) (INERTIAL TRANSPORT))
The VHDL code corresponding to a behavioral module consists of

(a) an entity declaration, consisting of a port clause listing the input signals as ports
of mode IN and the output signals as ports of mode OUT, all of type BIT;

(b) an architecture body, consisting of a concurrent signal assignment statement cor-
responding to each output signal.

The code (generated by our translator) for the module m defined above is displayed in

Figure 2(a). Note that our time units are interpreted by the translator as picoseconds,

and hence the delays are expressed as 2 and 5 nanoseconds. Note also that there is no

mention of inertial delay in the translation, since this is the VHDL default mode.
Another example of a behavioral module is the 1-bit adder adderti:

ENTITY adder2 1S
PORT (a,b,c: IN BIT; 1,h: OUT BIT)
END adder2;

ARCHITECTURE adder2 OF adder2 IS

ENTITY m IS COMPONENT nand
PORT(a,b: IN BIT; c,d: QUT BIT) PORT(a,b: IN BIT; 1,h: OUT BIT);
END m; END COMPONENT;
SIGNAL t1,t2,t3,t4,t5,t6,t7: BIT;
ARCHITECTURE m OF m IS BEGIN
BEGIN I1: nand PORT MAP (a,b,t1);
¢ <= a NAND b AFTER 2 NS; I2: nand PORT MAP (a,t1,t2);
d <= TRANSPORT NOT a AFTER § NS; I3: nand PORT MAP (b,t1,t3);
END m; I4: nand PORT MAP (t2,t3,t4);
IS: nand PORT MAP (c,t4,t5);
(a) I6: nand PORT MAP (c,t5,t7);

I7: nand PORT MAP (t5,t4,t6);

I8: nand PORT MAP (t5,t1,h);

I9: nand PORT MAP (t7,t6,1);
END adder2;

(b)
Figure 2: VHDL Code

(BEHAV (A B C) (L H)
((XOR3 A B C) (OR2 (AND2 A (OR2 B C)) (AND2 B ¢)))
(12000 10000)
(INERTIAL INERTTAL))

The two outputs of this module represent the 2-bit sum of the three input bits. Since
the higher-order “carry” output bit is not expressed as an elementary function of the
inputs, this is not a primitive module.

Let s = nth(j, O(M)) be an output of a behaviora] module M. Let T = nth(j, T(M))
be the corresponding term. For any bit vector V' of the same length as I (M), we define
the combinational value of s w.r.t. V as cv(s, V, M) = eval(r, pairlist(I(M), V).

We shall say that a list of waveforms is an input (resp., output) packet for a module M
if it has the same length as (M) (resp., O(M)). The semantics of behavioral modules
are defined by a function ezec of four arguments: (1) a module A, (2) an input packet
Pin for M, (3) an output packet p,,, = (w1 ... w,) for M, and (4) a time object tg.
The value of ezec(M, pin, Pous, to) is the updated output packet Poue = (w] ... w.) that
results from “executing” M at #,. It is defined as follows: Fori = 1,...,n, let v; be the
combinational value of nth(i, O(M)) w.r.t. Pin(to), and let t; = to @ nth(s, D(AM)). Then
w; is either transport(w;, vy, §;) or inertial(w;, v;, by, t;), according to nth(i, P(M)).

Our first observation concerning the behavior of ezec is that its value depends only
on the current values of the input:

Lemma 2.3 Let p, and p2 be input packets and let Pout be an output packet for

behavioral module M. For any tg € T, if pi(to) = pa(to), then ezec{ M, p1, Pout, to) =
ezec(M, p2, Pout, to).

Two other basic properties may be derived as consequences of Lemmas 2.1(b) and 2.2:

Lemma 2.4 Let pin and pou be an input packet and an output packet for a behavioral
module M. For any to € T, hist(ezec(M, pin, Pout, to),to) = hist(pout.to)-

Lemma 2.5 Let pin and Poue be an input packet and an output packet for a behavioral
module M and let to and t, be time objects. If to < t1 and Din(to) = Pin(t1), then
ezec(M, pin, exc(M, Pin. Pouts to), t1) = ezec(M, Pin, Pout, to)-

2.4 Structural Modules

Our language also includes modules that represent hierarchically constructed circuits.
These structures contain information concerning interconnections among the modules
of which they are composed.

A structural module is a list M = (STRUCTI O § LI LO), where

(1) STRUCT is the identifying literal atom for modules of this type;
(2) I=I(M)=(ry ... rm) is a list of literal atoms called the (global) inputs of M:
(3) O =0(M)=(s1 ... $) is alist of literal atoms called the (global) outputs of M:

(4) §=S(M)=(p1 ... p&) is a list of (structural or behavioral) modules, called the
submodules of M:

(3) LI = LI(M) = (4; ... Ag), where for j = 1,...,k, Aj = (aj1 ... ajm,) is a list
of literal atoms called the j* local inputs of M, and m; is the length of I'(u,);

(6) LO = (B ... Bi), where for j = 1,...,k, Bj = (bj1 ... bjn;) is a list of literal
atoms called the j** local outputs of M, and n; is the length of O(y;).

The members of the list (71 ... Tm b11 -« biny - br1 -+ bkn,), consisting of the global
inputs and all local outputs, are required to be distinct and are called the signals of M.
There is no such constraint on the global outputs or local inputs, but each local input
must be a signal of M, and each global output must be a local output.

Note that the local inputs and outputs of M correspond to its submodules. Thus.
intuitively, the submodules of a structure generate signals that are distinct from each
other and from the structure’s inputs. Each signal may be connected to arbitrarily many
submodule inputs. A signal other than a global input may serve as any number of global
outputs, but global inputs and outputs are distinct.

One additional constraint must be imposed on structural modules: in order to ensure
that any simulation (as defined in the next section) of a module terminates, our struc-
tures are required to be free of zero-delay cyclic paths. Several preliminary definitions
will be needed in order to make this notion precise.

We shall define a computable function that measures the (possibly infinite) maximum
length of any path of signals within a structure along which the total delay is 0. The
definition will be based on an auxiliary function, 6(M, s, E, L), the arguments of which
are to be understood as follows:

10

(1) M may be either the top-level structure or one of its components at any level of
the hierarchy;

(2) sis a signal of M;

(3) E=(e1 ... e,) is a list of generalized numbers corresponding to O(M). For each
i, ¢; is intended to represent the maximum length of any path that starts at the
i** output and leads out of M. Such a list is called an environment for M ;

(4) L is a list of signals of M, each of which is known to lie on some infinite path.

Under these assumptions, we may think of § = §(M, s, E, L) as the maximum length of
a path starting at 8. It is computed recursively as follows:

(1) If s is a member of L, then § = INFINITY. Otherwise:

(2) Let Ay = maz{e; : s = s;}, where O(M) = (81 ... 8,). (The maximum of the
null set is taken to be 0.)

(3) Suppose M is behavioral. Let D(M)=(dy ...d,). If s is an input of M and some
d; >0, then let Ay =1+ maz{e; : d; = 0}; otherwise, Ay =0.

(4) Suppose M is structural with S(M)=(py...pu). For1 <i <k, let nth(i, LI(M))
= (ay ... Aim,), Tlth(l,LO(M)) = (b ... bin,), I(p,‘) = (a; ... Qim,), and

let E; be the environment (€1 ... €in;) for u;, where for 1 Sk < ny e =
6(M, b, E,cons(s,L)). Let 6i; = 8(pi, aij, Ei,NIL) for i = l,...,kand j =
1,...,m;. Let Ay = maz{6;; : s = a;;}.

(3) 6 = maz(A,, Ay).

The function A is defined by by A(M,s,E) = 6(M,s, E,NIL). Next, we define the
relative §-depth of a module M with respect to an environment E to be the number P
computed as follows:

(1) Let Dy be the maximum value of A(M,s, E) over all signals s of M. If M is
behavioral, then p = Dy. Otherwise:

(2) Let M be structural with S(M) = (1 ... p). For 1 <i <k, let nth(i, LO(M)) =
(bi1 ... bin;) and let D; be the relative 6-depth of u; with respect to the environment
(A(M,b:1,E) ... A(M, b, E)). Then p =maz(Dy, Dy,...,D,).

Finally, we define the §-depth of M to be its relative §-depth with respect to the
environment (0 ... 0). This represents the length of the longest 0-delay path through
M. If it is not INFINITY, we shall say that M is 8-acyclic. All structural modules in
our language are required to have this property.

Although we have gone to considerable effort to formalize the VHDL “delta delay”
mechanism, the examples in which we are interested exhibit only positive delays. Our
first example is the structural module adder2, composed of nine nand gates and intended
as a gate-level “implementation” of the behavioral module adderi:

11

0

(STRUCT (A B C) (L H)
(nand2 nand? nand2? nand2 nand2? nand2 nand2 nand2 nand2)
((AB) (A Tl) (B T1) (T2 T3) (C T4) (T5 T4) (C T6) (TS T1) (T7 T6))
((T1) (T2) (T3) (T4) (T5) (T6) (T7) (W) (L))

The VHDL code corresponding to a structural module consists of

(a) an entity declaration, consisting of a port clause listing the inputs as ports of mode
IN and each output as a port, either of mode BUFFER, if it occurs as a local input,
or of mode 0UT, if it does not;

(b) an architecture body, consisting of a component declaration corresponding to each
module that occurs as a submodule, a signal declaration corresponding to each
local output that it not a global output (and hence does not already occur as a
port), and a component instantiation statement corresponding to each submodule.

The code for adder2 is shown in Figure 2(b), and a circuit diagram appears in Fig-
ure 3(b). Later, we shall compare the behaviors of adderl and adder2.

Of course, a signal path may be cyclic. provided that some signal in the path is
associated with a positive delay. This is an important feature of our language, as it
allows the modeling of state-holding devices. Figure 3(a) shows a clocked resetable
d-flip-flop, which is modeled by the structural module dff:

(STRUCT (CLK RST D) (Q gQN)
(notl and2 nand2 nand2 nand3 nand2 nand2 nand2)
((RST) (RN D) (B2 B1) (A1 CLK) (B1 CLK B2) (A2 DD) (B1i QN) (Q 42))
((RN) (DD) (A1) (B1) (A2) (B2) (@) (QM)))

In addition to five 2-input nand gates, the submodules of dff include an inverter notl,
an a 2-input and gate and2, and a 3-input nand gate nand3, the definitions of which are
assumed to be understood.

We shall define the semantics of structural modules by means of a function step, based
on the ezec function of Section 4. Note that the notions of input and output packets
may be naturally applied to any module. For a structural module M, however, instead
of a simple output packet, the third argument of step must be an object that consists of
a waveform corresponding to each signal generated by each component of M. Thus, for
any module M, we define a bundle for M to be a list B such that (a) if M is behavioral,
then B is an output packet for M; (b) if M is a structure with SIM) = (py -+ Bk)s
then B = (81 ... Bi), where f; is a bundle for p;, i =1,...,k.

Let B be a bundle for a module M and let s be a signal of M that is not an input of
M. The waveform for s determined by B is the waveform w that is computed as follows:
(a) if M is behavioral and s = nth(j, O(M)), then w = nth(j, B); (b) if M is struc-
tural and s = nth(j, nth(i, LO(M))), then w is the waveform for nth(j, O(nth(i, S(M)))
determined by nth(i, B).

The output packet for M determined by B, denoted as outp(M, B}, is defined as
follows: (a) if M is behavioral, then outp(M,B) = B; (b) if M is structural with
O(M) = (31 ... sn), then outp(M,B) = (wy ... wn), where for 1 < j < n, w; is the
waveform for s; determined by B.

12

k2]
”
PYE S—

Figure 3: (a) D-Flip-Flop (b) 1-Bit Adder

Let M be a structural module with nth(i, LI(M)) = (agy ... Gin;). Let p be an
input packet and let B be a bundle for M. The it* input packet determined by p and
B, denoted as inp(i, M, p, B), is the input packet (w; ... w,,) for nth(i, S(M)), where
for 1 < j <m, w; is computed as follows: (a) if s; is a global input nth(k,I(M)), then
w; = nth(k, p); (b) if s; is a local output, then w; is the waveform for 3; determined by

We may now define step. Let p and B be an input packet and a bundle, respectively,
for an arbitrary module M, and let ¢ € T. Then step(M, p, B, t) is the bundle B’, defined
as follows: (a) if M is behavioral, then B’ = exec(M,p, B,t) if p has a new value at £
and B’ = B if not; (b) if M is structural with S(M)=(py ... ux) and B = (Br ... Br),
then B’ = (8] ... B;), where B; = step(u,inp(i, M, p, B), 5;, t).

Thus, the execution of a structure at time ¢ amounts to the execution of each behav-
ioral component for which the value of some input signal changes at ¢.

We have the following generalization of Lemma 2.3:

Lemma 2.6 Let p; and p, be input packets and let B be a bundle for a module M. Let
to € T. If hist(py,to) = hist(po, ty), then step(M,p1, B, ty) = step(M, pa, B, tg).

The history of a structural bundle (Br...6:) rélativé to a time ¢ is recursively defined
as hist(B,t) = (hist(By,¢) ... hist(Bk,t)). Lemma 2.4 may be generalized as follows:

Lemma 2.7 Let p and B be an input packet and a bundle for a module M. For any
to € T, hist(step(M, p,B,to), t0) = hist(B,1y).

2.5 Simulation

Let p and B be an input packet and a bundle for amodule M. For any ¢t € T, we define
tnexe(t, p, B, M) to be the minimum element of the set of all ¢’ € T that occur as times
of events in the waveforms of p and B and that satisfy t' > ¢, if this set is nonempty;
otherwise, t,.z:(t, p, B, M) is undefined.

13

I

A simulation of M consists of repeated applications of step, which are performed by
the function run. For tg,ts € T, we define run(M, p, B, t,tg) to be the bundle B’ that
is computed recursively as follows: Let tnezt = tnext{to, 0, B, M). If tneze is defined and
tneze < tj, then B = run(M, p, step(M, p, B, tnest), tnezt, £r); Otherwise, B’ =B.

Tt is not obvious that this is a valid recursive definition, i.e., that it is satisfied by a
unique function. This may be established by exhibiting some measure of the arguments
that decreases with each recursive call. More precisely, it suffices to define a function
meas such that under the assumptions imposed on the arguments of run,

meas(M1 D, SteP(MaP» B, tnc:t)7 Lnexts tf) < meaS(A’I. D, B, ty, tf)

with respect to some well-founded order “<”. (In fact, this is the requirement for
admissibility of Nqthm function definitions.)

We may construct an appropriate measure based on a function ¢(M, p, B) that com-
putes an upper bound on the delta component of any time object that occurs in any
waveform during the course of a simulation. For each signal s of M or any module
occurring in M, this function computes the sum of (a) the length of the longest 0-delay
path through M starting at s and (b) the largest delta component that occurs in the
waveform of p or B that corresponds to s. ¢(M,p, B) is the maximum of these sums.
(We omit the actual recursive definition of ¢, which parallels that of 6-depth.)

Now, if tg = (m;, k) and t; = (myg,ky), then we define

meas(.\'[. p.B,to, tg) = (my = mi, ®(M,p, B) — k;).

It may be shown that with respect to the lexicographic order “<" on Nx N, this function
satisfies the property stated above. Note that its definition, and hence that of run,
ultimately depends on the assumption that M is §-acyclic.

The function meas provides an induction scheme for deriving properties of run.
The following, for example, is proved by induction as an immediate consequence of
Lemma 2.7

Lemma 2.8 Let pra'rrzd B be an input packet and a bundle for a module M. For any
to,ty € T, hist(run(M,p,B,to,tf),to) = hist(B, tg).

The next lemma, similarly proved by induction, provides for the decomposition of a
simulation interval:

Lemma 2.9 If p and B are an input packet and bundle for a module M, and ¢ty <
t' <tg, then run(M,p, B, to, ty) = run(M,p,run(M,p,B,to,t’),t',t,).

Another property of run that is important in the analysis of circuit behavior is the
following basic result, which describes the behavior of a structural module in terms of
that of its components. It is interesting that its proof requires the two properties of
step that are stated in Lemmas 2.6 and 2.7, namely that module execution is neither
predictive (with respect to input) nor retroactive (with respect to output).

Lemma 2.10 Let p and A = (ay ... ax) be an input packet and a bundle for a struc-
tural module M with S(M) = (1 ... #e). Let to,ty € T and B = (81 ... Bx) =
run(M,p, A,,to,t1). Then 3; = run(u:, b, i, to, t1), where b, = inp(i, M,p,B), i =
1,...,k

14

Proof: Let A’ = (o} ... o) = step(M,p, A, t'), where t' = tnext(to, p, A, M).
Then by definition of step, a = step(uq, a;, a;,t'), where a; = inp(i, M, p, A), and
by definition of run, B = run(M,p, A',¢',t;). By induction, we may assume that
Bi = run(p:, b, al, t', t,).

It follows from Lemmas 2.7 and 2.8 that hist(A,t') = hist(B,t'). Consequently,
hist(a;,t') = hist(b;,t’). By Lemma 2.6, a} = step(u;, b, a;,t'). Thus, we have B =
run(pi, bi, step(us, bi, a;, t'), ', ;).

Let t" = tneze(to, b, s, ps). Clearly, if t” is defined, then t”’ > ¢'. If " = t/, then

run(p;, b, ai,tg, t;) = run(pi, b;, step(ps, bi, i, t”), t", t))
= Tun(u;,b.-,step(u.-,b,-,a;,t’),t',tl) = g

In the remaining case,

run(pi, bi, i to, t1) = run(ug, by, aq,t', t;)
= run(u,b;, step(us, bi, a;,t'),t', ;) = B;.0

The definition of our top-level simulation function sim depends on run as well as
a function init, which generates an initial bundle from a module and an input packet.
First, for a given module M, we define the bundle Bo(M):

(1) If M is behavioral, then Bo(M) is the output packet (wq ... wo) for M, where

(2) If M is structural and S(M)=(u1 ... pe), then Bo(M) = (Bo(p1) ... Bo(ux)).

Thus, every waveform of By(M) is the trivial wo, which has the constant value g (t) =
F. Prior to simulation, each of these waveforms is updated by executing every behavioral
component of M. The result is the bundle init(M, p), defined as follows:

(1) If M is behavioral, then init(M, p) = exec(M, p, By (M), 0);

(2) If M is structural with S(M) = (1 ... i), then
nit(M, p) = (init(u1,inp(1, M, p, Bo(M))) ... init(p, inp(k, M, p, Bo(M)))).

Now, given an input packet p for M and a time object ¢, we define
sim(M,p,t) = run(M, p, init(M, 2),0,t).
We note the following restatements of Lemmas 2.9 and 2.10:

Lemma 2.11 If p is an input packet for a module M, and t, < t,, then sim(M,p, t;) =
run(M, D, .sn'm(M, D, tl)v t1, t?)'

Lemma 2.12 Let p be an input packet for a structural module M with S(M) = (py...).

Lett € T and B = (3, ... Be) = sim(M,p,t). Then B; = sim(p;, b;,t), where
bi =1inp(i,M,p,B),i=1,... k.

15

pr——
ol .
3 >
—
w
, , |
3
30 70 s WW 65

Figure 4: Simulation of m

As a simple example, a simulation of the primitive module m is illustrated in Figure 4.
The waveforms corresponding to the inputs A and B are

wy = ((T,60000) (F, 21000) (7,20000) (F, 10000) (7, 0))

and
wy = ((T, 70000) (F, 30000) (T,0)),

respectively. These are shown along with the waveforms
we = (((F,72000) (T, 12000) (F,0)))

and
wp = ((F,65000) (7, 26000) (F, 25000) (7", 15000) (F,0))
of the output sim(m, (wpwg),80000) = (w¢ wp).

This example exhibits a fundamental difference between transport and inertial delay:
an input pulse of duration less than the delay, as occurs in wy, is not reflected in an
inertial output.

All of the simulation results that we report herein were produced by the Nqthm
implementation of sim and have been matched with the output of the corresponding
Vantage simulations of the VHDL translations of these modules. One further observation
is warranted, however, in support of the claim that our language definition adheres to
the VHDL standard [11]. There is an apparent discrepancy between the definition of
sim and the standard: in our language, each output waveform of a behavioral module
is updated whenever there is a change in any input value. In VHDL, on the other hand,
in the absence of any instruction to the contrary (i.e., an explicit “sensitivity list"), a
signal’s waveform is updated only in response to changes in those inputs on which the
signal is functionally dependent.

Consider, for example, the output D of the module m. The VHDL code corresponding
to this signal (Figure 2) is executed only in response to events of the input waveform
wy. However, according to our definitions of ezec and step, its waveform is also updated
whenever the value of B changes, e.g., at time 30000 in our example.

Nonetheless, as illustrated in Figure 4, the behavior of this output signal is com-
pletely independent from that of B, in accordance with the VHDL standard. In or-
der to understand this, consider the waveform w that represents this signal before the
execution of m at time 21000. The updated waveform after this execution is w' =
transport(w,T,26000). Although w' is further updated when the value of B changes
at 30000, the value of (NOT1 A) remains 7, and hence, by Lemma 2.2, the resulting
waveform is transport(w’,T,35000) = w'.

The above argument is based on the simple observation that at the time of any
change in input during a simulation of a behavioral module, the output packet is the

16

result of executing the module at that time. In fact, an interesting property of our
simulator is that this holds true even when there is no input change, i.e, regardless of
whether the execution actually occurs:

Lemma 2.13 Let p be an input packet for a behavioral module M, let t € T, and let
B = sim(M,p,t). Then B = exec(M,p, B, t).

Proof: It is easily shown by induction and Lemma 2.3, that if By = exec(M, p, By, to)
and By = run(M,p, By, ty,t,), then By = ezec(M,p, By, t,). The lemma is an instance
of this result, with ty = ¢, By = init(M,p), t; =t,and B, = B. O

3 Specification of Synchronous Circuits

In order to simplify our analysis of circuit behavior, we shall assume in the sequel that
delays associated with outputs of behavior modules are positive. (All of the examples in
which we are interested conform to this assumption.) It follows that every time object.
occurring in a waveform produced by the simulator may be represented as a simple
natural number. Thus, we may replace T by N and “@” by “+”.

3.1 Combinational Modules

Before undertaking a characterization of synchronous sequential circuits, we shall con-
sider the relatively simple class of combinational circuits. Let p=(s1...3,) bealist
of signals of a structural module M such that for each t, 1 <i < p, there exists j such
that s;_ is a member of nth(j, LI(M)) and s; is a member of nth(j, LO(M)). Then p
is a pathin M from s, to s,. If 5, = Sp, then pis a loop in M. An arbitrary module M
is combinational if either (a) M is behavioral or (b) M is structural with no loops and
all of its submodules are combinational.

The notion of combinational value, which previously applied only to outputs of be-
havioral modules, may be extended to combinational modules. Let s be any signal of a
combinational module M and let V be a bit vector of the same length as I(M).

(1) If s = nth(j, I(M)), then cv(s,V, M) = nth(j, V);

(2) If M is structural and s = nth(j, nth(i, LO(M))), where
=nth(i,S(M)) and (a ... a,,) = nth(i, LI(M)), then
cv(s, V, M) = cv(nth(j, O(n)), (cv(ar, V, M) ... cv(am, V, M)), u).

We shall describe the behavior of comrbiiniaﬁirérnél modulesm Vtrerrms of the function cv.
Our analysis begins with the following characterization of behavioral modules:

Lemma 3.1 Let s = nth(j, O(M)) be the j** output of a behavioral module M, let
d = nth(j, D(M)) be the corresponding delay, and let w = nth(j, sim(M, p, te)).

Assume that for all t € [t;,t,), the combinational value of s w.r.t, p(t) is v, where
tr+d <t andty Sty Then for allt € [ty +d, ¢, +d), W(t) = v.

17

input

A
012 0 0 80 >
B
- @ >
c
adderl s
2 52 92
L
H
— r—
i0 %
adder2)
0 2 7 44 4 7
x J{[1 ’
«JIU 1
S S g
13 70 .14

Figure 5: Simulation of adder1 and adder2

Proof: Let p; = sim(M,p,t1). Then according to Lemma 2.13. py = exec(M,p,p1,t1).
It follows from Lemma 2.1(a) that the value of nth(j,p1) is v forall t > 4, +d.

We claim that if p' is any output packet for M such that nth(j,p’) has value v
throughout [ty +d,t2 +d), then so does nth(j,run{M,p,p',t',ts)), for any t' > t,. Once
this claim is proved, the lemma will follow from Lemma 2.11 upon substituting p; and
ty for p and t'.

The claim is proved by induction. It suffices to show that if p has a new value at ¢’ =
tneze(t, 2.0, M), and p” = exec(M,p,p,t"), then nth(j,p") has value v throughout
[ty +d,tz2 +d).

If " > ¢, then the desired result follows from Lemma 2.1(c). Thus, we may assume
t" < t, and hence, the combinational value of s w.r.t. p(t") is v. In this case, nth(j, p")
has value v on [t; +d, ¢’ +d) by Lemma 2.1(c), and on [t” +d,t2+d) by Lemma 2.1(a). O

Lemma 3.1 is illustrated by the simulation of adder1 shown in Fig. 5, where we com-
pare its behavior with that of the combinational module adder2. Note, for example,
that the output L of adderl, with corresponding term (XOR3 A B C), has the combi-
national value F throughout the interval from 40000 to 80000, and thus, since its delay
is 12000, the actual value of the signal is F from 52000 to 92000. Note also that this
simple behavior is not shared by the combinational module adder2.

However, we shall derive a generalization of Lemma 3.1 that provides similar (al-
though somewhat weaker) behavioral specifications of arbitrary combinational modules.
First, we associate each signal s of a combinational module M with two parameters,
called the minimum and mazimum delays of s, which represent the range of total delays

18

along all paths connecting the inputs of M to s. These are defined as follows:
(1) If 5 is a member of I(M), then dmin(s, M) = dmaz(s, M) = 0;
(2) If M is behavioral and s = nth(j, O(M)), then
dmin(s, M) = dmaz(s, M) = nth(j, D(M));

(3) If M is structural and s = nth(j, nth(i, LO(M))), where
kb =nth(i,S(M)) and (a; ... am) = nth(i, LI(M)), then

dmin(s, M) = dmin(nth(j,O(u)), u)
© +min(dmin(a, M),...,dmin(am, M)),

dmaz(s, M) = dmaz(nth(j, O(n)), W)
+rizaz:(dmax(a1, M),...,dmaz(an, M)).

Lemma 3.2 Let 3 = nth(j, O(M)) be the j** output of a combinational module M,
d = dmin(s, M), d' = dmaz(s, M), and '

w = nth(j, outp(M, sim(M, p, t))).

Assume that p is constant on the interval (t1,t2), where t) +d' < t; and ty < ty. Let
v=cv(s,p(t1), M). Then forallt €[ty +d',t, +d), w(t) = v. ‘

Proof: For behavioral M/, the conclusion follows from Lemma 3.1. For structural M ,
we shall show that it holds more generally for any local output s of M and the waveform
w for s determined by B = sim(M,p,ts). The proof is by induction on the length of
the longest path in M terminating at s.

Suppose s is a local output, say s = nth(j,nth(i, LO(M))). Let p = nth(i, S(M)),
B=nth(i,B), (a; ... am) = nth(i, LI(M)), and

b=inp(i, M,p,B) = (w; ... wnm).

Then w = nth(j, outp(u, 8)), and by Lemma 2.12, 8 = sim(u, b, ty).
For1<¢<m,letd, = dmin(ae, M), d), = dmaz(a¢, M), and v, = cv(ag, p(th), M).
If a; is a local output of M, then by inductive hypothesis, ,(t) = v, for all ¢ €
[t1 + d), 8 + dy); otherwise, a, is an input, and the same is true trivially. Thus,
b(t) = (1 ... vy) for all ¢t € (t1 + Aty + 6), where A = maz(dy,...,d,,) and
5=min(dl,...,dm). o
By the definition of cv,

v= C‘v(nth(], 0(”))! (vl e 'Um). p’) = C‘U(nth(l’ o(”))’a(tl + A)’u)
Since u is combinational,w(t) = v for all
t € [+ A+dmaz(nth(j, O(n)), u),tz + 6 + dmin(nth(j, O(n)), u))
= [th+d,t2+d).0 ' '

19

As an example, consider the output signal L of the combinational module adder2. By
tracing all paths from the inputs to L, we may compute cv(L, (abc), adder?) as a nested
nand?2 expression that may be shown to be tautologically equivalent to zor3(a,b,c). By
a similar calculation, we have

dmin(L, adder2) = 4000 and dmaz(L, adder2) = 12000.

Thus, according to Lemma 3.2, if ¢, + 12000 < t3, & < ty, and the input packet p for
adder?2 has the constant value f(t) = (abc) for t € [t;,22), then

w = nth(1, outp(adder2, sim(adder2, p, t2)))

has the value @(t)-= zor3(a,b,c) for t € [t; + 12000,¢; + 4000). This result is illus-
trated in Fig. 5: since the input packet has the constant value (T TT) on the inter-
val [20000, 40000), the value of the first output is zor3(T,7,T) = T on the interval
(32000, 44000). :

3.2 Sequential Modules

We shall describe a class of sequential circuits that may be characterized as synchronous
resettable rising-edge-triggered devices. The flip-flop dff of Subsection 2.4 will be used
as a primitive in the construction of these circuits.

Let M be a structural module with I(A) = (r1 ... Tm), where m > 2, S(M) =
(py ... k), and for i = 1,...,k, nth(i, LI(M)) = (@i ... @im,) and nth(i, LO(M)) =
(bi1 ... bin;). Let g€ N. Then M is a sequential module with multiplicity ¢ = mult(M)
if either (a) ¢ = 0 and M = dff, or (b) 0 < ¢ < k and the following conditions hold:

(1) For 1 €4 < ¢, pi is a sequential module;

(2) Forg<i <k, i 'is a combinational module;

(3) Fori<i<kand1<j<mi a5 =1 ifi<gand j=1;
(4) ForlSiskand1sjgmi,a,-,'=r2iffi§qandj=2;

(5) If (s1 ... 8p) is a path in M with sy = s,, then for some ¢ and j, where1 <i<p
and 1 < j < g, 8; is a member of nth(j, LO(M));

(6) If (s1 ... 8p) is a path in M with 5; a global input and s, a global output of
M, then for some ¢ and j, where 1 < ¢ < p and 1 € j < ¢, s; is a member of
nth(j, LO(M)).

Throughout the remainder of this section, we shall assume that M is a sequential module
with I(M), S(M), LI(M), and LO(M) as denoted above. Note that M must have at
least two inputs, 7, and 2, which we call the clock and reset, respectively; the other
inputs are called data. According to (3) and (4), if M # dff, then the clock and reset
of M are connected to the clock and reset, respectively, of each sequential submodule of
M, and to no other submodule inputs.

We define a path in M to be combinational if it contains no signal that is a local
output of a sequential submodule. According to (5) of the definition, M contains no

20

combinational loop; according to (6), no combinational path connects an input to an
output.

We define a signal s of M to be native if there is no combinational path from any
global input to s; the signals Q and QN of dff are also defined to be native. Thus, all
outputs of M are native signals.) ,

A native signal s of M is registered if either (a) M = dff and s is an output of M,
or (b) M # dff and s is a local output bi; where i < ¢ and nth(j, O(1;)) is a registered
signal of ;. This property will have special significance in connection with asynchronous
communication.

Two examples of sequential modules are diagrammed in Fig. 6. The enabled d-flip-
flop, edf?, is defined to be the following structure:

(STRUCT
(CLK RST EN D)
(Q oM
(dff notl nand2? nand? nand?2)
((CLK RST S4) (EN) (S1 Q) (D EN) (s2 S3))
((Q Q¥ (S51) (s2) (S3) (S4)))

Clearly, this module satisfies the definition, with mult(edff) = 1.
The 3-bit counter count3 is a sequential module of multiplicity 3, defined as follows:

(STRUCT
(CLK RST EN)
(Qo Q1 Q2)
(edff edff edff and2? xor2 xor2)
((CLK RST EN QNO) (CLK RST EN $3) (CLK RST EN S2)
(Qo Q1) (s1 Q2) (Qo Q1))
({Q0 QNO) (Q1 QN1) (G2 QN2) (S1) (s2) (83)))

Note that all outputs of both of these modules are registered.

3.3 Sequential Values

Our description of the behavior of sequential modules will be based on a function that
computes a sequence of values for each output corresponding to a given sequence of
input values. The definition of this function involves the notion of state. An object T is
a state of M if

(1) M =dff and T € B,
(2) mult(M) =1 and T is a state of iy, or
(3) mult(M)=g>1land E=(q, ... 0q), where fori = 1,...,q, o; is a state of i

Thus, a state associates a Boolean value with each flip-flop. The reset state To(M) is
the state for which each of these values is F:

(1) Zo(dft) = F;
(2) If mult(M) = 1, then To(M) = Eo(u,);

21

(3) If mult(M) = g > 1, then o(M) = (So(u) --. Tolg))-

A data vector for M is a bit vector of length m — 2, the components of which
correspond to the data inputs of M. We shall define a function next(V, L, M) that
computes a state of M from a data vector V and a state . This definition requires two
auxiliary functions.

First, for a native signal s and a state © of M, we define the native value of s
determined by £, denoted as nv(s, £, M), as follows:

(1) nv(Q, T,dff) = £ and nv(QN, T, dff) = not1(Z);
(2) i mult(M) =1 and s = by;, then
nv(s, £, M) = ne(nth(j,0(m)), &, m);

(3) If mult(M) =¢>1and s = by, where i < g, then

nv(s, , M) = nv(nth(j, O(u:)), nth(i, Z), ps);
(4) If mult(M)=gq > 1 and s = b;;, where i > g, then

nv(s, S, M) =
cv(nth(j, O(u)), (nv(ai, Z, M) ... ne(aim,, Z, M), pi).

Now, let V = (v3 ... v,) and £ be a data vector and a state of M, respectively. We
define the resultant value of a signal s determined by V and I, denoted as rv(s, V, £, M),
as follows:

(1) If s = r; is a data input of M, then ro(s,V,Z, M) = v3;
(2) If s is native to M, then 7v(s, V,Z, M) = nv(s,E, M);

(3) If mult(M) =q > 0 and s = b;;, where i > g, then

rv(s,V,E, M) =
cv(nth(j, O(ul))a (T’U(a“, ‘/1 21 M) e Tv(a'im.' ’ V’ 2! M))v N:)

We may now define the function next. Let mult(M) =q andfori=1,...,q, let
L; = (rv(ai, V.2, M) ... rv(aim, V. Z, M)).
Then nezt(V,Z, M) = L', where
(1) f¢=0 (ie, M = dff), then T’ = v3;
(2) fg=1, then &' = next(Ly, I, p);
(3) If¢g>1and £ = (o1 ... 7g), then

o' = (next(L1,01, 1) ... next(Lq,0q, te))-

22

[Y

i
e

Figure 6: (a) edff (b) count3

Now, let V = (V5 ... V,,), where for i = 3o...ym, Vi = (vir ... v;,) is a bit vector
of length n. V may be viewed as a Boolean matrix, the rows of which correspond to the
data inputs of M. Each column of this matrix, VJ =(v3j ... Um;), where j = 1,.. n,
is a data vector for M. A sequence of n + 1 states is determined by V as follows:

: _f ToM)ifj=0
state(5,V, M) = { nezt(l-/j,,state(j -LV,M),M) if0<j<n.

For any native signal s of M, the 7" sequential value of s determined by V is defined as
3v(j, 8, V, M) = nuv(s. state(j, V, M), M).

Thus, the sequential values corresponding to a given matrix of input values are
determined by the functions nv and nert. As an illustration, we shall analyze the
behavior of these functions for the modules edff and count3. Clearly, a state of edff
is a state of dff, i.e., a Boolean value. If ¥ is such a state and V = (v3 v4) is a data
vector, then

(0, V, L, edf£f) = nv(Q, V, £. edff) = nv(q, L,dff) =%

and
rv(QN, V, T, edff) = nu(QN, V, T, edff) = nu(QN, T, dff) = not1(Z).

Expanding the definition of rv, we have
(84, V, T, edf£) = nand2(nand2(notl(vs), L), nand2(vs, v4)),
which is also the value of next(V, L, edff). A trivial calculation yields the following:

Proposition 3.1 Let & and V = (v3 v4) be a state and a data vector for edff. Then

nv(Q,V,Z,edff) = T and nv(QN, V, Z, edff) = notl(Z);

nest(V.Z,eatr) = { % =T

23

A state of count3 is a vector of 3 Boolean values, corresponding to the mult(count3) =
3 occurrences of edff. If T = (o9 01 02) and V = (v3) are a state and a data vector,
then

rv(S1,V, T, count3) = and2(go,01),
rv(S2,V, T, count3) = zor2(and2(oo, o1),02),
rv(S3,V, T, count3) = zor2(oo, 1),
and it follows from Proposition 3.1 that
nezt(V, L, count3) =
(notl(ao) zor2(og,01) zor2(and2(ao,01),02) ifva =T
T if vz = F.
This result is conveniently expressed in terms of the function inc(W), defined as follows
for an arbitrary bit vector W:
(1) If W = NIL, then inc(W) = NIL; otherwise:
(2) If car(W) = T, then inc(W) = cons(F,inc(cdr(W))); otherwise:
(3) inc(W) = cons(T,cdr(W)).
Proposition 3.2 Let S = (0o 01 02) and V = (v3) be a state and a data vector for
count3. Then
nv(Q0, V, Z, count3) = 0y,
nv(QL,V, L, count3) = a3,
nv(Q2,V, L, count3) = 03;
inc(T) ifvs=T

next(V, I, count3) = { = s =F

3.4 Behavior of dff

Naturally, the behavior of sequential modules depends on that of the primitive dff.
A precise behavioral specification of dff is given by the following lemma, the proof of
which is an elaboration of the informal argument found in [20]:

Lemma 3.3 Let t; + 4000 < t_, t_ + 6000 < ¢y, and t; < ty. Letp= (werk Wrst Wo)
be an input packet for dff, and suppose that
Do (t) = F for allt € [t; — 6000,t,) U [t—,t2)
k™ T\ T for allt € [t1,t-),
Wrer(t) =7 for all t € [t; —8000,t1),

and
wp(t)=d forallt € [ty — 6000,1,).

Let sim(dff,p,tr) = ((wan) (wop) (War) (we1) (waz) (we:) (wq) (wan)) ond let v =
and2(not1(r),d). Then dq(t) = v and wq(t) = notl(v) for all t € [t; + 6000, t; +4000).
Moreover, if these same values hold for all t € [t;,t1 + 4000), then they also hold for all
t € [ty + 4000,¢, + 6000).

24

Proof: By Lemmas 3.1 and 2.12, we have Wrn(t) = notl(r) for all t € [t, - 6000, ¢; +
2000). Applying the same two lemmas again, we have wWpp(t) = v for all ¢t € [t -
4000, t; + 2000). Sxmllarly, Waa(t) = W, (1) =T fort e [tl - 4000, ¢, + 2000), Wn,(t) =
notl(v) for t € [t; — 2000, ¢, + 4000), and hence ,,(t) = v for ¢ € [t1,t1 + 4000).

We shall consider the case v = F; the case v = T is similar. In this case, iy, (t) =T
for ¢ € [t; + 2000, ¢, + 6000), and hence Waa(t) = F for t € [t; + 2000,¢, + 6000).

Let t' be the least time such that ¢ > 1, + 2000 and some waveform in the set
{war, wpy, was, Wp,} assumes a new value at ¢'. Then Wa(t) = Wa,(t) = F and Wy, (t) =
Woa(t) = T for t € [t; + 2000, t'). Since t' > t; + 4000, it follows that g, (t) =
We,(t) = T and w,,(t) = Ffor t € [t1 + 4000, ¢' + 2000). Similarly, W,,(t) = F for
t € [t1 + 4000, min(¢' + 4000, ¢t_ + 2000)). Thus, only w,, can possibly assume a new
value at ¢/, and this requires that ¢’ > t_ + 2000.

Hence, 15,(t) = 7 and w,.,(t) = F for ¢ € [t1 + 2000, t_ + 2000). It follows that
Won(t) = T for ¢ € [t; +4000,¢_ + 4000), and hence wq(t) = F for t € (t1 + 6000,t_ +
4000).

Let ¢” be the least time such that t > ¢, +6000 and either Wq OF Wqy aSSUmMes a new
value at t”. By an argument similar to the above, it is easily shown that t” > ¢, + 4000.
Thus, q(t) = F=u, fort € [t1 + 6000, ¢, + 4000), and won(t) = T = notl(u,) for
t € [t + 4000, ¢ + 4000). :

Now suppose that wq(t) = F and Wan(t) = T for t € [t;,t; +4000). Then Won(t) =T
for ¢ € [t], 12 + 4000). It follows that Wq(t) = F for t € [t; + 4000, t5 + 4000). O

3.5 Parameters

Our objective is to impose constraints on the input to a sequential module that will allow
its outputs to be described in terms of sequential values. In particular, the clock input
will be required to exhibit periodic behavior. We shall call each event of its associated
waveform a rising or falling edge, according to whether its value is 7 or F. An interval
between two successive rising edges is called a cycle. Each of the remaining inputs will
be required to maintain a stable value over a prescribed interval preceding each rising
edge. For the reset input r9, this value is 7 for an initial cycle, and F for every cycle
thereafter.

Under these constraints, we shall show that the behavior of M admits a fairly simple
description. A state of M will be associated with each rising edge. This state may
computed from the data values prior to the edge and the previous state by the function
next. The values of the outputs, which may change only during a short interval following
a rising edge, are the corresponding sequential values.

We shall describe the behavior of the signals of M in terms of several parameters.
First, we associate with each input other than the clock a setup time, which represents
the duration over which the signal is required to hold constant prior to a rising edge.
For the case M = dff, as suggested by Lemma 3.3, we define

setup(RST, df££f) = 8000 and setup(D, dff) = 6000,
Now suppose mult(M) = ¢ > 0 and let s be any signal of M other than r,. Assume

setup(s’, M) has been defined for each s’ # s that lies on a combinational path starting
at s. Fori=1,...,k, let ¢; be defined as follows:

25

(1) f s #ayj forall j,1 <5 <my, then {; = 0; otherwise:

(2) If « < g, then (; is the maximum setup(nth(j, I{p:)), pi) such that s = ayj, j =
2,...,my; otherwise:

(3) i > g, and ¢; is the maximum sum
dmaz(nth(j, O(u:)), 1i) + setup(bij, M)
such that setup(b;j, M) > 0,7 =1,...,ni.

Then setup(s, M) = maz (1, ..., Ck)-

Each native signal of M is associated with a minimum and a mazimum delay, which
determine an interval during which the signal’s value may change following a rising edge.
For the case M = dff, we define

dmin(Q, dff) = dmin(QN, dff) = 4000,

dmaz(Q,dff) = dmax(QN,df£) = 6000.
Now suppose Triult(M) = ¢ > 0 and let s = b;; be any native signal of M.

(1) If : < g, then

dmin(s, M) = dmin(nth(j, O(u:)), pi),

dmaz(s, M) = dmaz(nth(j, O(u:)), pi);
(2) Ifi > g, then

dmin(s, M) =dmin(nth(j, O(u:)), 1)
+min(dmin(ai, M), ..., dmin(ainm;, M)),

dmaz(s, M) =dmaz(nth(j, O(p:)), p:)
+maz(dmaz(aqa, M), ..., dmaez(aim,, M)).

We also define three parameters pertaining to the behavior of the clock input of M,
called the clock high, the clock low, and the minimum period of M. These represent
the minimum durations between a rising edge and the next falling edge, a falling edge
and the next rising edge, and successive rising edges, respectively. First, we define
high(dff) = 4000, low(dff) = 6000, and per(df£) = 10000. For mult(M) =q > 0, we
define

high(M) = maz(high(m), - .. high(ue));

low(M) = maz(low(p), - - -, low(pq));

26

per(M) = ma’x(Pl9P2rP3)a
where

Py = maz{per(u):1<i<q};
P =maz{setup(r;, M):2<i< m};

P; = maz{setup(b;;, M) + dmaz(nth(j, O(u)), i) : 1<i<q,1< J<ni}

Consider, for example, the circuits edff and count3. First, the setup times for
the signals of edff may be computed directly from the definitions, by tracing along all
combinational paths. For example,
setup(RST, edf£) = 8000,
setup(EN, edf£) = 12000,
setup(D, edf£f) = 10000;

The setups for count3 follow trivially:

setup(RST, count3) = 8000,

setup(EN, count3) = 12000.
In fact, it follows from our definitions that the reset input of every sequential module is
8000.

All outputs of both of these devices are registered. It follows that the minimum and
maximum delay of each output are 4000 and 6000, respectively.

Similarly, the clock high and low of each device (in fact, of any sequential device) are
4000 and 6000, respectively, as determined by dff. Calculation of the minimum period,
on the other hand, involves a comparison of various setups and delays. In the case of
edff, the minimum period is found to be

setup(Q, edff) + dmaz(q, dff) = 10000 + 6000 = 16000;
for count3, it is

setup(QO, count3) + dmaz(Q, edff) = 14000 + 6000 = 20000.

3.6 The Main Theorem

The input constraints for sequential modules will be expressed in terms of the functions
setup, high, low, and per. First, we define a waveform w to be an n-cycle pulse based
at to with high h, low ¢, and period # = h + ¢ if for k=0,...,n-1,

B(t) = Tforallte[to+k7r,to+k7r+h)
wit) = F forallt € [to + kx + hyty + (k + 1)7).

If h > high(M), £ > low(M), and 7 > per(M), then w is an admissible pulse for M.

27

Let V = (v ... vn) be a bit vector and let 7 > u > 0. Let w be a waveform such that
fork=1,...,n, w(t) = vk for all t € [to + km —u,to + kn). Then w is a stable n-cycle
waveform based at to with setup u, value list V, and period 7. If u = setup(rz, M),
vy =T, and v; = ... = v, = F, then w is an admissible reset waveform for M.

Fori=1,...,k, let w; be a stable n-cycle waveform based at #p with value list V;,
setup u;, and period 7. Let V = Vi ... Vi), U=(u ... ux), and W = (wy ... we)-
Then W is a stable n-cycle packet based at to with value matriz V, setup list U, and
period . f k =m—2and u; = setup(ripe, M) fori=1,...,k, then Wis an admissible
data packet for M.

Let w; be an admissible (n + 2)-cycle pulse for M based at ¢; with period 7. Let
w, be an admissible (n + 1)-cycle reset waveform for M based at to with period 7. Let
W3 ... Wm) be an admissible n-cycle data packet for M based at to + 7 with value matrix
V and period 7. Then (w; ... wy) is an admissible n-cycle input packet for M based at
to with value matriz V and period .

We may now state a behavioral specification for sequential modules:

Theorem 3.1 Let s = nth(j, O(M)) be the jt* output of a sequential module M, d' =
dmaz(s, M), and w = nth(j, outp(M, sim(M, p.te))-

Assume that p is an admissible n-cycle input packet for M based at tq with value
matriz V and period 7, where t; > to+(n+1)7. Fori=0,...,n. let v; = sv(i,s,V, M).
Then w is a stable (n + 1)-cycle waveform based at to + ™ with setup 7 — d', value list
(vo ... vn), and period T;

Assume further that s is a registered signal of M andvi_; = 1, forsomei, 1 <1< n.
Then w(t) = v; for all t € [to + (i + 1)m, to + (i + 2)7).

Theorem 3.1 is an immediate consequence of the following:

Lemma 3.4 Let s = nth(j,O(M)) be the j** output of a sequential module M, d =
dmin(s, M), d' = dmaz(s, M), and

w = nth(j, outp(M, sim(M, p, t5))).

Assume that p is an admissible n-cycle input packet for M based at to with velue matriz
V and period 7. Lettg + (n+)7 =1, b+ 7 = ta, and assume t; < ty. Let
v =sv(n,s,V,M). Thend(t)=v forallt €[ty +d ta+ d).

Suppose further that s is a registered signal of M. Ifn >0 andsv(n-1,5,V, M) =v,
then w(t) = v for all t € [t; +d,t2 +d).

Proof: For the case M = dff, the lemma is simply a restatement of Lemma 3.3.
Thus, we may assume that M # dff and proceed by induction on the structure of M.
Let V= (Vi ... V), where fori =3,...,m, Vi=(vig ... vr). Forj=0,...,m, let
T; = state(j,V, M).

Let B = sim(M,p,t;), and for each signal s of M, let

_ [nth(i,p) if s is a global input 7;
s =y the waveform for s determined by B if s is a local output bj,

If s is not y or ro, then for 0 < € < m, let

28

val(s,) = ru(s, (V3(e41) - Um(e+1))s Ze, M).
If 5 is native, then by definition we have
val(s, €) = nv(s, T4, M) = sv(¢,3,V, M).
Thus, for native s, we extend the definition to ¢ = n by
val(s,n) = sv(n,s, V, M).

Forany £ € N, let t! =ty + (£ + 1), so that tih=t"and &, =" = ¢ 4 1. We
shall prove, by induction on ¢, that the following three statements hold for each ¢ <n

(a) Foreachi, 1<i<gq, inp(i, M, p, B) is an admissible ¢-cycle input packet for u;

based at ¢y with value matrix

((val(ais,0) ... val(aiz, £ - 1)) ... (val(@im;,0) ... val(aim,, € - 1)))

and period 7.

(b) For each native signal s = bij of M,
w,(t) = val(s,€) for all t € [t + dmaz(s, M), t*! + dmin(s, M));
if s is a registered signal of M, then the same is true for the interval
[t + dmin(s, M).t**! + dmin(s, M)):

(c) If £ < m, then for each signal s of Af other than r; and rp,
Ws(t) = val(s, ¢) for all t € [t*+ — setup(s, M), té+1).

The lemma will then follow from (b), taking ¢ = n.

Proof of (a): For £ = 0, this follows from (3) and (4) in the definition of sequential
module. For £ > 0, we must also invoke the inductive hypothesis that (c) holds with ¢
replaced by £ - 1.

Proof of (b): We induct on the length of the longest combinational path terminating
at 5. Let s = by;. In the base case, where i < g, the result follows from the inductive
assumption that the lemma holds for the sequential submodule y;, Lemma 2.12, and
(a). In the inductive case, where i > g, it follows from Lemmas 2.12 and 3.2.

Proof of (c): This is similarly proved by induction on the length of the longest
combinational path terminating at s. In the base case, s is either a global input r;,
t 2 3, or a local output bij, ¢ < q. If s = 74, then the claim follows directly from the
admissibility of the input packet p- Suppose s = b;;, i < q. It follows from (b) that

Ws(t) = val(s, ¢) for all t € [t! + dmaz(s, M), t+1).
According to the definition of per(M)
T 2 setup(bij, , M) + dmaz(nth(j, O(u:)), ps).
Hence,
'+ dmaz(s, M) = t**!' — r + dmaz(nth(j, O(u;)), pi) < t+! - setup(bi;, M).

The induction is completed as in the proof of (b). O

29

4 Asynchronous Communication

Suppose we have a circuit in which an output of one sequential module, called the sender,
is connected to a data input of another, called the receiver. Under suitable conditions
on the sender’s input, its output waveform is guaranteed by Theorem 3.1 to be stable
with respect to the period of the sender’s clock. On the other hand, in order to apply
the results of Section 3 to the behavior of the receiver, we must be able to assume that
its input is stable with respect to the period of its own clock. In general, this is true
only for a synchronous circuit, in which the two modules are driven by the same clock.
In this section, we shall examine the asynchronous case, in which the two clock inputs
have different periods.

Our treatment of this problem is based on Moore’s model of asynchrony [15]. In this
model, the behavior of a signal is characterized abstractly by three quantities: a base
time, a period, and a bit vector (representing the values assumed on successive cycles).
Moore postulates that the receiver’s input vector is determined by a function asynch,
the arguments of which include the sender’s output vector, the two periods, and the two
base times. In this section, we shall present Moore's function asynch and establish the
applicability of his model to certain circuits represented in our language. In Section 3,
we shall employ a theorem of Moore to show that if the sender’s and receiver’s periods
are known to be approximately equal, then communication may be achieved by means
of a well known protocol.

4.1 Smooth and Quasi-Smooth Waveforms

The communication protocol is motivated by the observation that if the time at which
the receiver samples its input may be approximated by the sender, then the sender
may successfully communicate a value by redundantly writing the value on sufficiently
many successive cycles to guarantee that it is the value read by the receiver. For this
purpose, the assumption that the sender’s output waveform is stable is too weak; the
waveform must be known to be constant on each cycle during some critical interval.
With this requirement in mind, we define a stable waveform to be smooth if its setup
time coincides with its period. Thus, w is a smooth n-cycle waveform based at ¢
with value list V = (v; ... vn) and period = if for ¢ = 1,...,7, w(t) = v; for all
te [to + (k= 1)m, tg + km).

A somewhat weaker notion of smoothness is needed to describe waveforms that are
constant over some but not all cycles. First, we define a list V = (vi ... vs) to be a
generalized bit vector if each v; is either Boolean or the literal atom . In this case, we
shall call w a quasi-smooth n-cycle waveform based at to with value list V and period =
iffori=1,...,n, either v; = Q or w(t) = v; forall ¢t € [to + (k — 1)m,to + k). (Thus,
the value Q corresponds to cycles of unknown behavior.)

Our first objective is to derive a nontrivial representation of an output waveform
of a sequential device as a quasi-smooth waveform. For this purpose, we make the
following definition: If v is a Boolean atom and V is a bit vector, then smooth(v,V) is
the generalized bit vector V', where

(1) If V = NIL, then V' = NIL; otherwise:
(2) If car(V) = v, then V' = cons(v, smooth(v, cdr(V'))); otherwise:

30

(3) V'= cons(Q, smooth(car(V), cdr(V))).
Thus,if v =vo and V = (v, ... Un), then V' = (v] ... v!), where for i = 1,...,n,

U{ - Vs if Vi = Vit
: Qif v; # vi_,.

Lemma 4.1 Let s = nth(j,O(M)) be a registered output of a sequential module M. Let
w = nth(j, outp(M, sim(M, p, t;))), where p is an admissible n-cycle input packet for S
based at ty with value matriz V and period m, and ty > to + (n + L)7.

LetU = (sv(0,5,V, M) ... sv(n,s,V, M)). Then w is an n-cycle quasi-smooth wave-
form based at to + 27 with value list smooth(car(U), cdr(U)) and period .

Proof: For 0 < k < n, let U, = (sv(n - k,5,V, M) ... sv(n,s,V,M)) and V; =
smooth(car(Uy), cdr(Us)). We shall prove, by induction on k, that w is a k-cycle quasi-
smooth waveform based at ty + (n — k + 2)7 with value list Vi and period 7.

The base case k = 0 holds vacuously. For k > 0, since cdr(Vi) = Vi_;, we need
only consider car(V;) and the behavior of w on to+(n-k+2)mto+(n-k+ 3)m).
If car(Vi) = Q, there is nothing to prove. In the remaining case. car(Vi) = car(Uy) =
car(Ux-1), i.e., sv(n - k,s,V, M) =sv(n -k + 1,5V, M), and the result follows from
Theorem 3.1. O

4.2 Describing Output as Input

Next, for a given quasi-smooth waveform with period 7, (representing that of the
sender’s clock), we would like to derive an alternative representation as a quasi-smooth
waveform with a given period =, (that of the receiver’s clock). Let w be an n-cycle
quasi-smooth waveform based at ¢, (a rising edge of the sender’s clock) with value list
V = (v1...v,) and period x,. Assume ¢, < tr <t,+m, (wheret, represents a rising edge
of the receiver’s clock). We shall construct a list of values V' = warp(V, baytr s, 7r)
such that w is a quasi-smooth waveform based at t, with value list V' and period r,.
The definition of warp requires several auxiliary functions.

Let ¢ satisfy ¢, < t < t, + nm,. Choose k so that ts+(k—-1)r, <t <t,+knr,. Then
1 <k < n. (k represents the number of cycles of the sender that intersect the interval
[t.,t).) We define

, nifn=wn=...=9
szg(V.t.,,t,ﬂ'a)z{ Qlifnolt- 2 k

Under the same constraints on ¢, choose £ so that ts+ém, <t <ty +(€+1)7,. Then
0<?f<n. (t, + tn, represents the maximum sender's rising edge that is not exceeded
by t.} We define

t:'(V, tayt,my) =t, + em,
and

Istt(V,ty,t,m,) = (veyq ... V).

31

i

Now we may define V' = warp(V, t,, tr, 75, 7.): If t. + 7. > t, +nm,, then V' = NIL;
otherwise,

V' = cons(sig, warp(Ist*,t¥ ¢t + 7., 7, 7,),

where sig = sig(V, t,, tr + m,,7,), IstT = Ist¥(V, 5, ¢- + 7, 7,), and th =tF (Ve tr +
Try Ts)-

Lemma 4.2 Let w be a quasi-smooth n-cycle waveform based at t, with value list V
and period 7,. Let m, > 0 and t, < t, < t,+m,. Let V' = warp(V, t,,t,, 75,7} and
let n' be the length of V'. Then w is a quasi-smooth n'-cycle waveform based at ¢, with
value list V' and period 7,.

Proof: We may assume ¢, + 7. < t, +nm,, for otherwise, n' =0 Let V=_v;...05)
and let sig, Ist*, and t} be defined as in the definition of warp. By induction, we may
further assume that w is a quasi-smooth (n’ — 1)-cycle waveform based at ¢, + m, with
value list cdr(V') = warp(lst*,tf,t, + 7,7, 7,) and period =.. We need only show
that either car(V') = sig = Q, or % has the constant value sig on the cycle [ty tr + 70).

Suppose sig # Q. Choose k so that ¢, + (k - 1)m, < t, + 7, St + kr,. According
to the definition of sig, sig = v, = v2 = ... = vk, and hence, W(t) = sig for all
t € [ts,ts + kmy) 2 [trytr + 7). O

4.3 Eliminating Metastability

Lemmas 4.1 and 4.2 together provide a representation of a registered output waveform
from the sender as a quasi-smooth waveform with respect to the receiver’s clock. In
order to achieve communication, we shall design a clocked state-holding device, called
a d-latch, that converts a quasi-smooth input to a stable output. In our asynchronous
circuit, this device will share the receiver’s clock, and its output will be connected to
the receiver’s input.

The d-latch will consist of an inverter and three nand gates. Its functionality will
depend on the relative delays of these components. Thus, along with our standard gates
not1 and nand?2, both of which have delay 2000, we shall require the following faster
nand gate, fnand2:

(BEHAV (A B) ((NAND2 A B)) (1000) (INERTIAL))
We define dlatch to be the following module, which is diagrammed in Fig. 7:

(STRUCT (CLK D) (52)
(notl nand2 nand2 fnand2)
{(CLK) (CLK D) (Si 53) (S0 s52))
((s0) (S1) (S2) (s3)N

Unlike all other circuits that we have encountered, the specified behavior of dlatch will
also depend on the unique character of inertial delay. In particular, we shall need the
following result: '

32

Lemma 4.3 Let nth(j,0(M)) = s be the J** output of a behavioral module M. Let
nth(j, D(M)) = d and nth(j, P(M)) = INERTIAL. Let p be an input packet for M, let v
be the combinational value of s w.r.t. P(to), and let w = nth(j, sim(M, p, to).

(a) If w(ty) = v, then w = hist(w, ty);
(a) If W(ty) # v, then w = cons((v, 1), hist(w, ty)), where ty < ¢, Sto+d.

Proof: By Lemma 2.13 and the definition of ea:eé,
w = inertial(w, v, ty, ¢y + d).

The lemma follows from the definition of inertial. O

The behavioral specification of dlatch is an instance of the following, with dy =
d1 = dz = 2000 and d3 = 1000.

Lemma 4.4 Let Gy be the inverter .
(BEHAV (A) (NOT1 A) (do) (INERTIAL))
and for i =1,2,3, let G, be the nand gate
(BEHAV (A B) (NAND2 A B) (di) (INERTIAL)),
where dy < dy and dy + d3 < di+dy. Let D =dy +d; + dy +d3. Let L be the module

(STRUCT (CLK) (D)
(Go G1 G2 Gy)
((CLK) (CLK D) (Si S3) (S2 s80))
((s0) (s1) (52) (s3))).

Let p = (werk wp) be an input packet for L, and assume that

) _[T forallte|t,,t.)
Werk(t) = { F forallt € [t_,t;),

wheret_ >t + D and tf >t +D. Let ((wo) (w1) (w2) (w3)) = sim(L,p,ts). Then
Wy has a constant value v on t-+D, ty). If i has a constant value u on (t4+,ty), then
u=uv.

Proof: For each t € N, let By = ((wo,:) (wy,,) (wa,e) (w3,)) = sim(L,p,t). Then for
t=0,...,3, w; = Wie,. Let tg =t_ + dy. For each ¢ 2 to, the following results may be
derived from Lemmas 3.1 and 2.12:

(a) 1,: has the constant value F on (t+ +do, t0);

(b) 3, has the constant value T on [t+ + do + ds3, tg + ds);

(c) 1o, has the constant value T on [to, ts + dy);

(d) 1y,. has the constant value T on [t- + di,ty +d;).

In particular, for each t > ¢,, o,c and 18, are both constant on (to, ty).

By Lemma 2.12,

(w2,e) = sim(Ga, (w1, w3,),t)

and .
(w3,e) = sim(Gs, (wo,c wa,y),).

We shall apply Lemma 4.3 to both G, and Gj.

33

We shall show that for some ¢, € [to,t— + D) and some v € B, o, (t1) = v and
3,4, (t1) = notl(v). Let wa4,(to) = vz and w3 4, (to) = v3. We consider the following
cases:

Case 1: v3 = notl(vz). In this case, we take t; = to and v = vs.

Case 2: v3 = v2. By Lemma 4.3(b),

wa s, = cons((notl(vz),t2), hist(wa,, to)),
where ty < tg < tg + da, and
ws 4, = cons((notl{vy),te), hist{ws3 ¢, t0)),

where {) < t3 < tg + ds.
Subcase 2a: t3 < to. Here, tnege(to, p, Bio, L) = t3. By Lemma 2.7,

Wa,e, (t3) = Wa,r,(t3) = v2
and
":’S,ts(ts) = W3 4o (t3) = notl(vs).
Thus, we have t; = {3 and v = v,.
Subcase 2b: £, < 3. In this case, tnezt(to, P, By, L) = t3, and we have
o e, (t2) = Wa,ze(t2) = notl(ve)
and
W31, (t2) = W3 ,40(t2) = v2.
In this case, t; = t; and v = notl(vs).
Subcase 2c: to = t3. We have
g, (t2) = W34, (t2) = notl(v).
By Lemma 4.3(b),
W23 = cons((vz, {2 + dz), wa,10),

and
w3 ¢, = cons((va,ta + da), W3,e0)-

It follows from our hypotheses that d3 < d.. Hence,
Wa, 1,44 (b2 + d3) = notl(vz)

and
W3 t544, (t2 + d3) = va.

Thus, t; = t; + d3 and v = notl(v2).

Now, by Lemma 4.3(a), s, = hist(wa,,,t1) and W3e, = hist(is,.,,t1). Hence,
tnezt(t1, P, Bey, L) 2 ty. It follows that for any t' € [t1,ts), By = By,, and in particular,
Wy, (') = wap(t') = wo, (t") = v. Thus, wy,, has the constant value v on [ti,t7) 2
[t + D,ty).

34

—— 200 [1) oy
:: - S— : oo ° P L1, :: ::
19— 1o x 24 o
¢ B=——{ p¢ X » o3
13} P———o{ 03 b2 01
12— 53 oon o
I8 B——i n1 I o0
] [] 18 Bemee——i py
n me—{ oy [] bom
CLK
e
(2]
(- 4
ctxe cum
wre AR
Figure 7: (a) dlatch " (b) bpm

Finally, suppose that W, has a constant value u on [ty,ts). Then 1, (t) = notl(u)
forte(t, +dy,t_ + dy). Since w3(t) =7 on [t+ + do + d3,t9 + d3), the combinational
value corresponding to 52 is u on the intersection of these intervals, [maz(ty +dy,ty +
do + d3), min(t. + dy, ¢ty + d3)). Thus, by Lemma 3.1, We(t) =ufort e [maz(t, +
dy +da,ty +dp +dy +do),min(t_ +dy +dy, to +ds +d2)). In particular, 1, (t) = u for
t € [to,ty +ds + d2). Thus, v; = u. Moreover, Subcases 2b and 2¢, in which @ assumes
the value not1(v,) at some point in this interval, are eliminated. In the remaining cases,
v=v=u. 0

In order to avail ourselves of the results of (15], we must restate Lemma 4.4 in terms
of Moore's function det. If V is a generalized bit vector and oracle is a bit vector, then
det(V, oracle) is the bit vector V', defined as follows:

(1) If V = NIL, then V' = NIL; otherwise;

(2) f car(V) € B, then V' = cons(car(V'), det(cdr(V'), oracle)); otherwise:
(3) If oracle = NIL, then V' = cons(7T, det(cdr(V'), oracle)); otherwise:

4) V= cons(car(oracle),det(cdr(V),cdr(omcle))).

Lemma 4.5 Letp = (werk wp) be an input packet for dlatch, where Werk IS an n-cycle
pulse based at to with high h > 7000, low ¢ > 7000, and period 7 = h + ¢, and wy, is g
quasi-smooth n-cycle waveform based at to with value list V and period r. Let

((wo) (w1) (w2) (w3)) = sim(dlatch, p, t),

where ty > to + nx. Then for some bit vector oracle, wy is a stable n-cycle waveform
based at to with setup € — 7000, value list det(V, oracle), and period r.

Proof: We induct on n. For n = 0, the statement is vacuous. For n > 0, we may
assume that w; is a stable (n — 1)-cycle waveform based at to + m with setup ¢ — 7000,
value list det(cdr(V), oracle’), and period 7. By Lemma 4.4, %, has a constant value v
on [to+h+7000, ty+7) = [to+7—(£—7000), to+), and if car(V) # Q, then car(V) = v.
If car(V) = q, then let oracle = cons(v, oracle’); otherwise, let oracle = oracle’. In

35

either case, w; is a stable n-cycle waveform based at to with setup ¢ — 7000, value list
det(V, oracle), and period 7. O

4.4 The Main Theorem

In Section 5, we shall apply the results of this section to a circuit bpm, consisting of two
sequential submodules, sndr and rcvr, and a dlatch: According to the definitions that
we shall present later, sndr has 9 data inputs and one registered output, SOUT, while
rcvr has one data input, SIN, and 9 outputs. The circuit bpm, which is diagrammed in
Fig. 7, is defined as follows:

(STRUCT
(CLKS RSTS CLKR RSTR SEND IO It I2 I3 I4 15§ 16 I7)
(DONE 0O 0i 02 03 D4 05 06 07)
(sndr dlatch rcvr)
¢((CLKS RSTS SEND IO I1 I2 I3 I4 IS5 I6 17}
(CLKR SOUT)
(CLKR RSTS LOUT))
((sauT)
(LouT)
(DONE 00 01 02 03 04 05 06 07)))

The following theorem summarizes our results on asynchrony, as they pertain to the
module bpm. The theorem refers to Moore’s function asynch, which is defined as follows:
Let V and oracle be bit vectors and let ¢,,t,, 7, 7, € N such that 7, > 0, 7 >0, and
te <t. <ty +ms. Then

asynch(V,t,,t,, 75, 7=, oracle) =
det(warp(smooth(T, V), ts, tr, 7y, n,), oracle).

Theorem 4.1 Let p = (Werks Wrists Weirkr WrsTr Wsenp Wo - - wr) be an input packet
for bpm, where
(8) (Werks Wasts Wsenp Wo ... W) 5 AN admissible n,-cycle input packet for sndr

based at b, with value matriz V and period 7,;

(b) Workr 18 an admissible (n. + 2)-cycle pulse for rcvr based at b, with high h >
7000, low € > 7000 + setup(SIN,xcvr), and period 7, = h+¢;

(c) westn 15 an admissible (n, + 1)-cycle reset waveform for rcvr based at b, with
period T,.
Lett, = b, +7,. Assume that b,+27, <. < by+(ns+2)ms < to+n.m,. Choose j so that
by +jms < t, < b, +(j+1)m, and let t, = by +jm,. Assume sv(j~-2,80UT,V,sndr) = T.

Let U = (sv(j — 1,S0UT,V, sndr) ... sv(ns, SOUT, V, sndr)). Let wiour e the wave-
form for LOUT determined by sim(bpm, p,ts), where ty 2 tr + nrmr. Then for some bit
vector oracle, (Werkr Wrstr Wiout) 1§ 07 admissible input packet for rcvr based at b,
with value matriz

(asynch(U, t,,tr, 7y, 77, oracle))

and period ..

36

Proof: Let wsour be the waveform for SQUT determined by sim(bpm,p, ¢ f). Ac-
cording to Lemma 4.1, wsoyr is a quasi-smooth waveform based at t, with value list
smooth(T,U) and period «,. It follows from Lemma 4.2 that wsoyy is also a quasi-
smooth waveform based at ¢, with value list warp(smooth(T,U), t,,t.,7,, 7,) and pe-
riod r.. Finally, by Lemma 4.5, wiour is a stable waveform based at t. with setup
€ — 7000 > setup(SIN, rcvr), value list

det(warp(smooth(T,U), t,. ¢,, r,, 7.), oracle) =
asynch(U, t,, ¢, 7,, 7., oracle)),

for some oracle, and period =,.. O

5 Biphase'Mark

Moore’s formulation [15] of the biphase mark protocol is based on two functions, send
and recv, which represent the computations performed by the sender and the receiver,
respectively. After presenting the definitions of these functions, we shall implement them
in the design of the sequential modules sndr and revr., Then, using a theorem of Moore
in combination with results of Section 4, we shall show that the circuit bpm achieves
communication between these modules.

5.1 Sending

The function send returns a bit vector that represents an encoding of a given input bit
vector msg. Each bit of msg is encoded as a bit vector called a cell, computed as the
value of cell(z,n,k,b), where b is the bit of msg to be encoded, z is the final bit of
the preceding cell, and n and are parameters of the protocol. A cell consists of two
subcells, each of which is a uniform bit vector: a mark subcell of length n, followed by
a code subcell of length k. The mark subcell is intended as a signal to the receiver that
a new cell has been entered: each of its bits is notl(z). The code subcell is the region
in which the receiver is expected to look for information from which it will derive the
value b of the encoded bit: if = T, then each bit of this subcell is z; if b = F, each bit
is notl(z).

The definition of cell requires three auxiliary functions. First, the subcells are con-
structed by the function listn: for any n € N and any z, listn(n, z) is the uniform vector
(z ... z) of length n. Next, the two subcells are combined by the function app: for any
twolists L = (ay ...a,) and M = (br ... bm), app(L, M) = (ar...anb1...by). Finally,
the bit occurring in the code subcell is determined by the Boolean function equal, where
equal(z,y) =T if r = y, i.e., equal(z,y) = notl(zor2(z, y)).

Now, we may define

cell(z,n, k,b) = app(listn(n, notl(z)), listn(k, equal(z, b))),
and cells(z,n, k,msg) is defined as
(1) NIL, if msg = NIL;
(2) app(cell(z,n, k, car(msg)), cells(equal(z, car(msg)),n, k, cdr(msg))), if msg # NIL.

37

The protocol includes the convention that the value T is transmitted until the en-
coded message is sent. Thus, the encoded bit vector constructed by send includes “pads”
consisting arbitrarily many copies of 7 on both sides of the cells. The arguments of send
include the lengths p; and p2 of these pads:

Send(msg) P, N, k’ P2) =
app(listn(py, T), app(cells(T,n, k,msg), listn(ps. TY))).

5.2 Receiving

Next, we define recv(i, z, j, L), which may be shown, under suitable assumptions, to be
the inverse of send. This function recovers a bit of the encoded message from each cell
by first detecting the beginning of the mark subcell, and then reading and decoding a
bit at a predetermined location within the cell, which has been calculated to lie within
the code subcell. Its arguments are interpreted as follows: 1 is the number of bits of
the original message yet to be recovered, z is the last bit to have been read (from the
preceding cell), j is the location within the cell of the bit to be read, and L is the
remaining input stream.

The beginning of a new cell is detected by the function scan(z. L), which successively
removes bits from the beginning of the list L until a value different from z is found. The
recursive definition follows:

(1) If L = NIL, then scan(z, L) = NIL; otherwise:
(2) If car(L) = z, then scan(z,L) = scan(z, cdr(L)); otherwise:
(3) scan(z,L) = L.

We shall require one other auxiliary function: If n € N and L is a list, then cdrn(n, L)
is defined to be

(1) L,if n = 0;
(2) cdrn(n — 1,cdr(L)), if n > 0.
Finally, we define recv(i, , j, L) to be the bit vector msg, where
(1) If i = 0, then msg = NIL; otherwise:
(2) Let S = scan(z,L). If length(S) < k, then msg = NIL; otherwise:

(3) Let b = nth(k +1,5) and L' = cdrn(k + 1, S). f b=z, then
msg = cons(T,recv(i — 1,b, j, L'); otherwise:

(4) msg = cons(F,recv(i - 1,b,5,L").

1For technical reasons, we shall slightly modify Moore's original definition of this function. Our
modification does not affect the validity of any of his results.

38

5.3 Moore’s Theorem

Moore has proved a statement of correctness of the protocol for certain values of the
parameters. The lengths of the mark and code subcells generated by send are taken to be
n =3 and k = 13, respectively. The index of the bit read by recv following the detection
of an edge is j = 10, i.e., the eleventh bit after the edge is sampled. The theorem also
depends on an assumption concerning the proximity of the two clock periods:

Theorem 5.1 (Moore) Let 7, > 0, r, > 0, and 177, < 187, < 197,. Lett, <t, <
ts + 7. Let msg be a bit vector of length k. Then for any bit vector oracle and any
numbers p; and po,

recv(k, T, 10, asynch(send(msg, p1, 5,13, p2), ts, tr, Ty, Ty 0Tacle)} = msg.

We shall apply Moore’s theorem to the specification of the circuit bpm. The sequential
submodules sndr and rcvr of bpm remain to be defined. As we present the definitions
of the these modules and their components, which are diagrammed in Figs. 8-12, we
shall derive characterizations of their behavior that are analogous to Propositions 3.1
and 3.2. The proofs of these results are based on straightforward calculations and have
all been mechanically checked. Therefore, the details of these proofs are omitted here.

3.4 Basic Components

The message that is transmitted from sndr to revr will consist of eight bits. It is stored
(by both sndr and rcvr) in a shift register, shift8, which is constructed from eight
copies of the following 3-port cell, port3:

(STRUCT
(CLK RST SHIFT SIN LOAD DIN)
()]
(edff nand2 nand2 or2 nand?2)
((CLK RST S3 S4) (DIN LOAD) (SIN SHIFT) (LOAD SHIFT) (S1 S2))
((Q QN) (S1) (S2) (S3) (34)))

The behavior of port3 may be derived easily from that of edff (Proposition 3.1):

Proposition 5.1 Let £ and V = (shift sin load din) be a state and a data vector for
port3. Assume that shift and load are not both T. Then

nv(Q,V, Z,port3) = I;

sin if shift =T and load = F
nezt(V,Z,port3d) = ¢ din if shift =F and load =T
L ifshift=F andload = F.

The register shift8 is defined as follows:

39

{a) port3

r—id Q7
® o8
o o8
9 04
o o1
@ 93
@ o

9o
e oI oIM o DIN o
s 9 st Q s Q 1] M Q o= Q
mIrY mre mire re Y marr
LOAD LOAD LoaD LOAD
cl1 €K F{CLE (47 3 CLXK (1% 3
Figure 8: (b) shift8

(STRUCT

(CLK RST LOAD SHIFT SIN DO Di D2 D3 D4 D5 D6 D7)
(0 Q1 G2 Q3 Q4 Q5 Q6 Q7)
(port3 port3 port3 port3 port3 port3 port3 port3)
((CLX RST SHIFT SIN LOAD DO)

(CLK RST SHIFT QO LOAD D1)

(CLK RST SHIFT Q1 LOAD D2)

(CLK RST SHIFT Q2 LOAD D3)

(CLK RST SHIFT Q3 LOAD D4

(CLK RST SHIFT Q4 LOAD DS)

(CLK RST SHIFT Q5 LOAD D6)

(CLK RST SHIFT Q6 LDAD D7))
((0) (Q1) (Q2) (@3) (Q4) (Q5) (@6) (A7)

Proposition 5.2 Let T = (0g ... 07) and V = (load shiftsind, ... d7) be a state and
a data vector for shift8. Assume that shift and load are not both T. Then

nv(Qi,V,Z,shift8) =0y, i=0,...,7,
(singg ... g¢) if shift="T andload =F

next(V,Z,shift8) = ¢ (do ... dr) if shift=F andload =T
z if shift = F and load = F.

In order to describe the shifting operation that is performed by shift8, we define, for
any b € B and any bit vector V,

40

Figure 9: (a) edff (b) cedff

ey NIL if V =NIL
shift(b,V) = { cons(b, shift(car(V), cdr(V))) if V # NIL.

Thus. shift(sin,(ag ... 07)) = (sinag ... o).

In addition to dff and edff, we shall require two other versions of the flip-flop. The
first of these, cdff, has an input CLR, which may be used to override the other data
input D and reinitialize the state:

(STRUCT
(CLK RST CLR D)
(Q oM
(dff notl nand2)
((CLK RST DCN) (CLR) (D CN))
((Q QN) (CN) (DCN)))

Proposition 5.3 Let £ and V = (clr d) be a state and a data vector for cdff. Then

nv(Q,V,Z, cdff) = & and nv(QN, V, T, cdff) = not1(L);

F ifedr=T

next(V, L, cdft) = { d ifcr=F

The second, cedff, is a combination of edff and cdff:

(STRUCT
(CLK RST CLR EN D)
(Q oM
(dff notl notl nand3 nand3 nand2)
((CLK RST S5) (EN) (CLR) (Q s1 s2) (D s2 EN) (S3 s4))
((Q Q) (S1) (S2) (S3) (sS4) (s5)))

Proposition 5.4 LetE and V = (clrend) be a state and a data vector for cedff. Then

nv(Q,V, L, cedff) = T and nv(QN, V, L, cedff) = notl(Z);
F dfedr=T

next(V,Z,cedff) =¢ d ifclr=F anden=T
L fdr=Fanden=F.

41

® 2 - B
[T DA Do—enm
3l =D

- : 2™ @
) Figure 10: (a) count5s (b) comp5

Using cedff, we construct the following 5-bit counter, count5:

(STRUCT

(CLK RST CLR EN)
(Qo Q1 Q2 Q3 Q%)
(cedff cedff cedff cedff cedff

and2 and2 and2 xor2 xor2 xor2 xor2)
((CLK RST CLR EN QNO)

(CLK RST CLR EN X1)

(CLK RST CLR EN X2)

(CLK RST CLR EN X3)

{CLK RST CLR EN X4)

(Q0 Q1) (A1 Q2) (A2 Q3) (QO0 Q1) (Q2 A1) (Q3 A2) (Q4 A3))
((Q0 QNO) (Q1 QN1) (Q2 QN2) (Q3 QN3) (Q4 QN4)
(A1) (A2) (A3) (X1) (X2) (X3) (x))N

Proposition 5.5 Let & = (09 ... 04) and V = (clr en) be a state and a data vector for
count5. Then

nv(Q:, V,Z, counts) =0y, 1 =0,...,4;
listn(5,F) ifcdr=T

next(V,Z, counts) = ¢ inc(ent) ifclr=F anden=T
z ifclr=F anden = F.

For convenience in representing states of both countd and count5, we define, for
keNandn e N,

_ | lstn(k,F) ifn=0
bu(n) = { tnc(bve(n—1)) ifn>0.

42

Thus, bu(n) is the k-bit vector that represents the number n.
We shall also require a combinational module, the following 5-bit comparator comp5:

(STRUCT
(Co BO C1 B1 C2 B2 C3 B3 C4 B4)
(MATCH)
(x0r2 xor2 xor2 xor2 xor2 nor5)
((co BO) (€1 B1) (c2 B2) (C3 B3) (C4 B4) (S1 S2 S3 54 S5))
({s1) (s2) (S3) (s4) (s5) (MATCH)))

This module simply determines whether two given 5-bit vectors are equal, i.e.,

T if(CoC4)=(bob4)

C’U(MATCH, (Co bo (55} bl e Cg b4), COEPS) = { F if not.

5.5 The Sender

The action of sndr is controlled by the submodule scount, which is defined as follows:

(STRUCT
(CLK RST STOP BIT)
(MARK CODE)
(cdff countS or2 or2 t0 £0 compS comp5)
((CLK RST STOP S1) (CLK RST S2 Q) (BIT Q) (STOP BIT) ())
(FQOFQITQ2F Q3 F Q4) (TQOFQL1FQ2F Q3 T Q4))
((Q QM) (Qo Q1 Q2 Q3 Q4) (S1) (S2) (T) (F) (MARK) (CODE)))

A state of scount is a list (on cnt) of two components, corresponding to the two
sequential submodules, cdff and count5. As long as both data inputs are F, the value
of on remains constant. While on = 7 » cnt is incremented repreatedly; while on = F,
cnt remains unchanged. If either input is 7, then on is set accordingly and cnt is reset
to bus(0). The output values are both determined by ent:

Proposition 5.6 Let T = (on ent) and V = (stop bit) be a state and a data vector for
scount. Then

T ifent= bus(4)

nv(MARK, V, T, scount) = { F if ent # bus(4);

T ifent = bus(17)

nv(CODE, V, £, scount) = { F if ent # bus(17);

(Fbus(0)) ifstop=T
_) (T bus(0) ifstop=F and bit =T
nezt(V, T, scount) = (T inc(cnt)) ifstop=bit=F andon =T
(F ent) if stop=bit=F and on = F.

The definition of sndr is as follows:

43

[N]

[RAy

g [t
Il

R} ey]
o
&)
L] [1,
T)
ey arw—=O o MY Leid C]
- :’: bl -
az ¥ Y-
» gy -
Figure 11: (a) scount (b) sndr
(STRUCT
(CLK RST SEND IO I1 I2 I3 I4 IS I6 IT)
(souT)

(scount shift8 count3 edff or2 and2 and4 or3 £0)

((CLK RST A4 02) (CLK RST SEND CODE F I0 Ii I2 I3 14 I5 16 I7)
(CLK RST MARK) (CLK RST 03 SOUT) (CODE SEND) (Q7 MARK)

(MARK CO C1 C2) (A2 SEND CODE) (})

((MARK CODE) (QO Q1 Q2 Q3 Q4 Q5 Q6 Q7) (CO C1 C2)

(Q SOUT) (02) (A2) (a4) (03) (F)))

This module has two modes of operation. In one mode, it waits dormantly for the
SEND input to become 7. When this occurs, the current values of the other eight data
inputs are loaded into the shift register, the state of the flip-flop edff (which determines
the output value) changes, and the controller scount begins counting. This mode is
described by the following:

Proposition 5.7 LetV = (sdg...dr) be a data vector for sndr, and let £ = (01020304)
be a state of sndr, where o, = (on cnt). Assume that on = F and cnt = bus(0). Let
L' = next(V, T, sndr).

(a) If s =T, then T’ = ((T bus(0)) (do ... d7) o3 notl(os));

(b) Ifs=F, thenT' = L.

In the other mode of operation, the register contents are encoded and transmitted.
Each register bit is encoded as a cell consisting of a 5-bit mark subcell and a 13-bit
code subcell, as measured by scount. The number of cells that have been transmitted
is recorded as the contents of count3. At the end of each mark subcell, this number
is incremented. At the end of each code subcell, the scount counter is reset and the
register contents are shifted:

44

Proposition 5.8 LetV = (sdo ...d7) be a data vector for sndr, and let T = (01050304)
be a state of sndr, where o, = (on cnt) and oy = (g0 ... g7). Assume that s = F and
on=7. Let ' = nezt(V, T, sndr).

(a) If ent = bug(4) and o3 = bu3(7), then

T’ = ((F bvs(0)) o2 inc(os) zor2(gr,04));
(b) If ent = bus(4) and o3 # bvs(7), then

T = ((T bus(5)) o2 inc(os) zor2(qgr,04)):
(c) If ent = bug(17), then

‘ ' = ((T bus(0)) shift(F,o2) o3 notl(oy));
(d) If ent # bus(4) and cnt # bus(17), then
L' = ((T inc(cnt)) oq o3 74).

Our main theorem on sndr is the following specification:

Proposition 5.9 Let V = (Vseno Vio ... Vi;) be a list of bit vectors, each of length
n 2 144. Let m = n — 144. Assume that forj=1,...,n,

' T ifi=
nth(y, Vsenp) = { F :;j # 71:7,1

Let d; = nth(m, V), fori = 0,...,7. Let sv; = sv(j,SOUT, V, sndr), forj =1,...,n.
Then (sv; ... sv,) = send((dy ... dy),m, 5,13, 0).

Proof: Let T; = state(j,V, sndr), J = 0,...,n. By Proposition 5.7(b), for i
0,...,m,

Z; = Zo(sndr) = ((F bvs(0)) listn(8, F) bv3(0) F)
and hence (sv; ... gv,,) = listn(m,T). It remains to show that
(8Um+1 ... Un) = cells(T, 5,13, (d7 ... dy)).
By Proposition 5.7(a),
Zmsr = ((T bvs(0)) (do ... dr) bus(0) T).
We shall show that for all k, 0 <k<7,if
Emir+18k = (T bus(0)) app(listn(k, F), (do ... dr—s)) bvs(k) z),

then
(S‘Um+1+1gk e S’Un) = cells(:l:, 5, 13, (d7..k e do))

The proposition will follow from this result upon setting k = 0.

45

The proof is by induction on 7 — k. In the base case, k = 7, our assumption is that
Smt1+18k = Eme127 = (T bus(0)) app(listn(7, F), (do)) bvs(7)).
By Proposition 5.8(d), for £=0,...,4,
Smatzr+e = (T bus(€)) app(listn(7, F), (do)) bus(7)),
and by Proposition 5.8(a),
Tmt12745 = Zmt132 = ((F bus(0)) app(listn(7, F), (do)) bvs(0) zor2(do,z)).
By Proposition 5.7(b), Emi1324¢ = Sm132 for £ =0,...,12. It follows that

(8Um4127 ... SUn) = app(listn(3, not1(z)), listn(13, equal(do, 7)))
;- cell(x,5,13,dg)
- = cells(z, 5,13, (do)).

In the inductive case, k < 7, we again have, for £=0,...,4,
2m+1+13k+g = ((T b‘U5(€)) app(listn(k,f), (do Ce. d7_k)) bvg(k) .’L‘)

by Proposition 5.8(d). By Proposition 5.8(b) and (d), for £=35..... 17,

_ T4 1+18k+¢ =
((T bus(€)) app(listn(k,F),(do ... dr-x)) bus(k + 1) zor2(di—«,z))-

Thus, (SUm+1+18k - -+ SUm+1418k+17) IS
app(listn(5, not1(z)), listn(13, equal(dr_x,))) = cell(z, 5,13, dr_k).
By Proposition 5.8(¢), Zm+1+18(k+1) I8
((T bvus(0)) app(listn(k +1,F),(do ... dr_(xk+1))) bvs(k +1) equal{dr_k, x)).
It follows from our inductive hypothesis that
(SUm41418(k+1) «++ SUn) = cells(equal(dr—k, z), 5,13, (d7—(k+1) --- do)),
and hence ($Vmi14+18k ... SUn) iS

app(cell(z,5,13,d7—x), cells(equal(dr -k, %), 5,13, (dr—(k41) - do))
- = cells(z,5,13,(d7—x ... do)). O

5.6 The Receiver

Its action of the receiver is controlled by a submodule, rcount, which is defined as
follows:

46

=] ' 5
Figure 12: (a) rcount (b) revr

(STRUCT
(CLK RST STOP START)
(BIT)
(cdff count5 or2 t0 £0 comps)
((CLK RST STOP S1) (CLK RST STOP Q) (START Q)
O O(TWFOFQRRTQF Q4))
((Q Q¥) (Qo Q1 02 @3 Q4) (51) (T) (F) (BIT)))

The functionality of rcount is similar to that of scount. A state is again a list
(on cnt) of two components, corresponding to the two sequential submodules, cdff and
count5. As long as both data inputs are F, the value of on remains constant. While
on =T, cnt is incremented repreatedly; while on = F , cnt remains unchanged. If STOP
is T, then on and cnt are reset to F and bus(0); otherwise, if START is T, then on is set
to 7. The output value is determined by comparing cnt with bus(9):

Proposition 5.10 Let £ = (on cnt) and V = (stop start) be a state and a data vector
for rcount. Then

T lf cnt = b’U5(9)

nv(BIT,V, 2, rcount) = { F if ent # bus(9);

(F bus(0)) if stop=T

. (T inc(cent)) ifstop=F and start =on =T
nezt(V,Z, rcount) = { (7 cnt) ifstop=on=F and start = T
(T inc(ent)) if stop=start=F andon =T

(T ent) if stop = start = on = F.

The definition of revr is as follows:

47

(STRUCT
(CLK RST SIN)
(00 01 02 03 04 05 06 07 DONE)
(rcount edff count3 shift8 dff notl notl xor2 and4 £0)
((CLK RST BIT N2) (CLK RST BIT N1)
(CLK RST BIT) (CLK RSTFBITXFFFFFFFF)
(CLK RST A) (SIN) (X) (SIN @ (Qo Q1 Q2 BITY (O
((BIT) (Q QN) (Qo Qi Q2) (00 01 02 03 04 05 06 07)
(DONE DONEN) (N1) (N2) (X) () (F)))

Like sndr, rcvr has two modes of operation. In the first mode, it waits for an edge,
i.e., a change in input. This is detected by comparing the input with the state of the
flip-flop edff, which is the negation of the most recently read value. In this mode, the
controller rcount is turned off. When an edge is detected, rcount is turned on and its
counter is reset:

Proposition 5.11 Let V = (sin) be a data vector for rcvr, and let T = (o102030405)
be a state of revr, where o) = (oncnt). Assume thaton = F, cnt = bvs(0), and g5 = F.
Let ¥’ = next(V, L, revr).

(a) If sin = aq, then &' = ((T bus(0)) o2 03 04 F);

(b) If sin # o, then &' = L.

In its second mode, the receiver counts until it reaches the input bit to be sampled.
At this point, the appropriate value is shifted into the register shift8, the bit counter
count3 is incremented, the current input value is stored in edff, and rcount is turned
off. When the eighth bit has been computed, the state of dff is altered to indicate
termination:

Proposition 5.12 Let V = (sin) be a data vector for rcvr, and let T = (0102030403)
be a state of revr, where gy = (on cnt). Assume that on = T and 05 = F. Let
T = next(V,Z, revr).

(a) If cnt = bus(9) and o3 = bus(T), then

S = ((F bus(0)) notl(sin) bus(0)) shift(zor2(oz, sin),04) T);
(b) If cnt = bus(9) and o3 # bus(7), then

%' = ((F bus(0)) notl(sin) inc(os) shift(zor2(os,sin),as) F);
(c) If cnt # bus(9), then &' = ((T inc(cnt)) 02 03 04 F).

The specification of rcvr is given by the following lemma. For its proof, we require
the following definition: If L and M are two bit vectors, then

M if L =NIL
push(L, M) = { push(cdr(L), shift(car(L), M)) if L # NIL.

Thus, f L=(z; ... z¢)and M = (31 ... Ym), where £ < m, then

push(L,M) = (Z¢ ... Ty Y1 -« Ym—0)-

48

Proposition 5.13 Let V = (V), where V is a bit vector of length n. Assume that
length(recv(8,T,10,V)) = 8. Then for somem, 1< m<n,

T ifj=m
F ifj<m.

sv(j,DONE, V, rcvr) = {
Fori=1,...,7 letd; = sv(m,0i,V, revr). Then
(dr ... dp) = recv(8,7,10,V).
Proof: Let V = (v; ... v,). For j = 0,...,n,let V; = (vj41 ... v,) and

L; =state(j,V,rcvr) = ((on; ent;) flg; bits, reg; done;).

We shall prove the following generalization of the desired result:
Suppose that for some Jyonj = F, cnt; = bug(0), done; = F for all i <7, and

length(recv(8 — b, notl(flg;),10,V;)) = 8 - b,
where bits; = bus(b). Then for some m > J, done; = F for all i < m, done, = 7, and
Tegm = push(recv(8 — b, not1(flg;), 10, Vi), reg;).

The proposition will then follow from the case j=0.
First note that according to our assumption,

recv(8 — b, not1(flg;), 10, V;) # NIL,

and hence, scan(not1(flg;), V;) = Vi for some k, j < k < n - 10. Thus, v; = not1(flg;)
fori=j+1,... & and Vk+1 = flg;. From the definition of recv, we have

recu(8 — b, not1(flg;), 10, V)=
cons(zor2(flg;, vis11), recv(T - k, Vk+11, 10, Vier1y)),

and hence,
length(recv(7 — b, viy1;, 10, Vign1)) =7 -0,

By Proposition 5.11, &, = Ljfori=j...,k and

Ziv1 = ((T bus(0)) flg; bits; reg; F).
By Proposition 5.12(c), for i = 0,...,9,

Zer14i = ((T bus(3)) flg; bits; reg; F).

The proof is by induction on 7 — b. Consider first the base case, b = 7. By Proposi-
tion 5.12(a),

Zet1r = ((F bus(0)) notl(ves11) bvs(0) shift(zor2(flg;, ves11),7eg;) T).

Here, the result holds for m = k + 11, since

49

push(recv(8 — b, not1(flg;),10,V;), reg;)= push((zor2(flg;j, ve+11)) Teg;)
= shift(zor2(flg;, vk+11),Teg;)-

Now suppose that b < 7, and assume that the claim holds with b replaced with b+ 1.
By Proposition 5.12(a),

Tes11 = ((F bus(0)) notl(veynn) bua(b+1) shift(zor2(flg;, ve+n1) 7€9;) F)-
We may conclude that for some m > k + 11, done; = F for all i < m, done,, =T, and

regm= push(recv(7 — b, vie411,10, Viy11), shift(zor2(flg;, ve+11),7€95))
= push(cons(zor2(flg;, vk+11), Tecv(7 = b, vis11, 10, Vit11)),7e9;5)
= push(recv(8 — b, not1(flg;), 10, V;),reg;). 0

5.7 The Main Theorem

Finally, we present our main result concerning the circuit bpm. We assume that the
two clock input waveforms are admissible pulses for sndr and rcvr, respectively, with
periods that conform to the constraints imposed by Moore’s theorem, and that the other
inputs are well-behaved with respect to the clocks, as required by Theorem 3.1. We also
assume that the SEND input has the value 7 on exactly one cycle, during which an
8-bit message is read from the other data inputs. This message is then encoded and
transmitted by sndr, and received, decoded, and output by rcvr. As stated in the
theorem, the completion of this process is signalled by the output DONE: when its value
first becomes 7T, the other outputs display the decoded message.

Theorem 5.2 Let pin = (Works Wasts Workr Wrstr Wsenp W - - - wr) be an input packet
for bpm, where

(a) (cLK S Wasts Wsenp Wo ... W) 15 G0 admissible n,-cycle input packet for sndr
based at b, with value matriz V, = (Vigno Vio ... Vir) and period m,;

(b) Workn s an admissible (n, + 2)-cycle pulse for revr based at b, with high h >
7000, low € > 7000 + setup(SIN,rcvr), and period 7, = h+¢;

(c) wrstn is an admissible (n, + 1)-cycle reset waveform for revr based at b, with
period T,.

Assume 17r, < 187, < 197,. Suppose that for some m,, 1 <m, < n, — 144,

. T ifj=m,
nth(]’VSEND) - { F ifj #m,, 1 <7<,
Fori=0,...,7, let di = nth(m,, Vi;). Let t, = b, + m,. Assume that b, + 2w, < t, <
by + (ms + 2)7, and by + (ns + 2)7, < tr + e 7y
Let pou: = outp(bpm, sim(bpm, pin, ts)), where tg 2 tr + nrr. Then pow: is @ stable
n,-cycle packet based at tr + 7, with velue matriz V. and period 7., for some V, =
(Voone Voo -« Vor). For somem,, 1 < m, < nr,
. T +fj=m
nth(], VDONE) - { .F 1f] # my, 1 S] S Ny,

and fori=0,...,7, nth(m,, Vo) = d:.

50

Proof: We may assume. without loss of generality, that n, = m, + 144. For j =
0,...,n,, let sv; = sv(j,S0UT, V,, sndr). By Proposition 5.9,

(sv1 ... 8v,,) = send((d7 ... dp), m,,5,13,0).

Since svp = 7, we have sv; = T for all j < m;,.
Fix j so that b, + jm, < t, < by+(j+1)7, and let ¢, = bs+jm,. Then2 < j < m,+2,
and hence sv;_ = 7. Let

S = (svj-1 ... svn,) = send((dy ... dy), m, -7+2,5,13,0)

and let wyoyr be the waveform for LOUT determined by sim(bpm, p, t;). By Theorem 4.1,
(WeLkn Wnstr Weoyr) is an admissible input packet for rcvr based at b, with value matrix
(4) and period 7, where

A = asynch(U, t,,t,, 7y, 7., oracle)

for some bit vector oracle.
Let V. = (Voone Voo ... Vo), where

Voone = (sv(1,DONE, (4),revr) ... sv(n,, DONE, (4),zevr))
and fori=0,...,7, '
Voi = (sv(1,04,(A), revr) ... sv(n,,0t, (A), revr)).

By Theorem 3.1, p,y, is a stable n,-cycle packet based at b, + 7, + 7, = ¢, + 7, with
value matrix V, and period r,.

According to Moore’s Theorem, recu(8, T, 10, A) = (dy ... dy). But then, by Propo-
sition 5.13, there exists m, such that 1 < m, < n,,

Tlth(]vVDONE)z{ F ;fj;&m, 1<;<n,

and
(nth(m,, Vo,) ... nth(m,, Vo)) = (d7 ... dg).

Thus, fori =0,...,7, nth(m,,V,;) = d;. O

6 NASA’s Reliable Computing Platform

The goal of NASA’s RCP project is an implementation of a provably correct operating
system that provides the application software developer a mechanism for dispatching
periodic tasks on a fault-tolerant computing base that appears as a single ultra-reliable
processor. The RCP may be modeled at four levels of abstraction:

(1) The uniprocessor model;

(2) The fault-tolerant synchronous replicated model;

51

(3) The fault-tolerant asynchronous replicated model;

(4) The hardware/software implementation.

At the second level, fault-tolerance is achieved by voting results computed by the
replicated processors, which operate on the same sensor inputs, and are assumed to
behave synchronously. A verified version of this model was reported in Task 1 [1].

At the third level, the assumptions of the synchronous model must be discharged.
This requires (a) a mechanism for achieving synchronzation among the clocks that drive
the replicated processors and (b) a protocol for asynchronous communication. These
were addressed in Tasks 2 [22] and 3 [15], respectively.

Final realization of the RCP at the hardware level requires an appropriate hardware
description language that will allow the integration of these previous results in an im-
plementable design. This was the primary motivation for the present effort. Thus, we
have designed a language that provides for the modeling of asynchronous circuits, at
a sufficiently low level to allow straightforward implementation. In addition, we have
demonstrated a methodology for deriving and verifying comprehensive descriptions of
the behavior of these circuits.

Our verification of the simple biphase mark circuit defined in Section 5 is a first step
toward a verified RCP implementation. We would like to apply the same techniques,
along with our previous results on Byzantine agreement and clock synchronization, to
create a realistic implementation of a fault-tolerant circuit, verified at a greater level of
detail than has been previously possible.

References

[1] Bevier, William R. and Young, William D., Machine checked proofs of the Design
and Implementation of a Fault-Tolerant Circuit, Technical Report 62, Computational
Logic, Inc., NASA CR-182099, November 1990.

[2] Bickford, M., Formal Semantics for a Subset of VHDL and its Use in Analysis of
the FTPP Scoreboard Circuit, Odyssey Research Associates. Ithaca, N.Y., NASA
CR-191577, April 1994.

[3] Boyer, R. S. and Moore, J S., A Computational Logic Handbook, Academic Press,
Boston, 1988.

[4] Brock, Bishop C. and Hunt, Warren A., Jr., A Formal HDL and its use in the
FM9001 verification, in Proceedings of the Royal Society, 1992.

[5] Brock, Bishop C., Hunt, Warren A., Jr., and Young, William D., Introduction to a
formally defined hardware description language. In Proceedings of the IFIP Confer-
ence on Theorem Provers in Circuit Design, June 1992.

[6] Butler, R.W., A Survey of Provably Correct Fault-Tolerant Clock Synchronization
Techniques, NASA TM-100553, NASA, February 1988.

[7] Butler, R.W. and Johnson, S.C., The Art of Fault-Tolerant System Reliability Mod-
eling, NASA TM-102623, March 1990.

52

(8] Damm, W., A Formal Semantics for VHDL based on Interpreted Petri Nets, Tech-
nical Report, University of Oldenburg, 1992.

[9] Di Vito, B.L., Butler, R.W., and Caldwell, J.L., Formal Design and Verification
of a Reliable Computing Platform for Real-Time Control: Phase 1 Results, NASA
TM-102716, 1990.

[10] Butler, R.W., and Di Vito, B.L., Formal Design and Verification of a Reliable
Computing Platform for Real-Time Control: Phase 2 Results, NASA TM-104196,
1992.

(11] Institute of Electrical and Electronic Engineers, Draft Standard VHDL Language
Reference Manual, 1993.

(12] Kaufmann, M., 4 Traﬁslator from an HDL of David Russinoff to VHDL, Internal
Note 278, Computational Logic, Inc., July 1993.

(13] Lamport, L. and Melliar-Smith, P.M., Synchronizing Clocks in the Presence of
Faults, Journal of the ACM, 32: 1 (January, 1985), pp. 52-78.

[14] Lamport, L., Shostak. R., and Pease, M., The Byzantine Generals Problem, ACM
TOPLAS, 4:3 (July, 1982), pp. 382-401.

[15] Moore, J S., A Formal Model of Asynchronous Communication and its Use in Me-
chanically Verifying a Biphase Mark Protocol, Technical Report 68, Computational
Logic, Inc., NASA CR-4433, June 1992.

[16] Moore, J S., Mechanically Verified Hardware Implementing an 8-Bit Parallel 10
Byzantine Agreement Processor, Technical Report 69, Computational Logic, Inc.,
NASA CR-189588, 1992.

[17] Pease, M, Shostak, R.. and Lamport, L., Reaching Agreement in the Presence of
Faults, Journal of the ACM, 27:2 (April 1980), pp. 228-234.

(18] Roden, M. S., Digital Communication Systems Design, Prentice-Hall, 1988.

[19] Sanchez, L. and Kloos, C. D., “Functional Description of VHDL”, in Segundo Con-
greso de Programacion Declarativa PRODE 93, Spain, September 1993.

(20] Taub, H. and Schilling, D., Digital Integrated Electronics, McGraw-Hill, New York,
1977.

[21] Van Tassel, J., A Formalization of the VHDL Simulation Cycle, Technical Report
249, University of Cambridge Computer Laboratory, June 1992,

[22] Young, William D., Verifying the interactive convergence clock synchronization al-
gorithm using the Boyer-Moore theorem prover, Technical Report 77, Computational
Logic, Inc., NASA CR-189649, April 1992.

33

Appendix: Nqthm Formalization
A Language Definition

T T e e L Ll L A Ll A bttt bttt bbbt
iy S-EXPRESSIONS

M Prerparerprprgrraeaeaeer e P T PP T PR R 2 S SRS DL LA L A S L LS A LA Ll LAl
;;Some basic definitions (the first 5 are from J's asynchrony file):

(defn listn (n value)
(if (zerop n)
nil
(cons value
(listn (subl n) value))))

(defn cdrn (n 1lst)
(if (zerop m) 1st (cdrn (subl n) (cdr 1st))))

(defn nth (n lst)
(car (cdrn n lat)))

(defn boolp (x) (or (equal x t) (equal x f)))

(defn bvp (x)
(if (nlistp x)
(equal x nil)
(and (boolp (car x})
(bvp (edr x)))))

(defn bvpn (x n)
(it (zerop n)
(equal x ()
(and (boolp (car x))
(bvpn (cdr x) (subl n)))))

(defn plistp (1)
(it Qlistp 1)
(plistp (cdr 1))
(equal 1 (0)))

(defn firstn (n 1)
(if (zerop m)
O
(cons (car 1) (firstn (subl n) (cdr 1)))))

;;Boolean terms and their evaluation:

(defn arities ()
((t0 . 0) (0 . O)
(notl . 1)
(and2 . 2) (or2 . 2) (nand2 . 2) (mor2 . 2) (xor2 . 2)
(and3 . 3) (or3 . 3) {(nand3 . 3) (nor3 . 3) (xor3 . 3)
(and4 . 4) (or4 . 4) (nandd . 4) (nor4 . 4) (xord . 4)
(and5 . §) (or5 . §) (nandS . §) (nor§ . 5) (xor5 . 5)))

54

(defn elemp (fn)
(assoc fn (arities)))

(defn arity (fn)
(cdr (assoc fn (arities))))

(defn termp$ (flg x 1)
(if (equal flg ’list)
(if (listp x)
(and (termp$ t (car x) 1)
(termp$ 'list (cdr x) 1))
t)
(it (Qistp x)
(and (elemp (car x))
(equal (length (cdr x)) (arity (car x)))
(termp$ ’list (cdr x) 1))
(member x 1))))

(defn apply0 (fn)
(case fn
(t0 t)
(0)
(otherwise £)))

(defn applyi (fn x)
(case fn

(notl (not x))

(otherwise £)))

(defn apply2 (fn x y)
(case fn

(and2 (and x y))
(or2 (or x y))
(nand2 (not (and x y)))
(nor2 (nmot (or x y)))
(xor2 (not (equal x y)))
(othervise t)))

(defn apply3 (fn x y z)
(case fn
(and3 (and x y z))
(or3 (or x y z))
(nand3 (not (and x y 2z)))
(nor3 (not (or x y 2)))
(x0r3 (mot (equal x (not (equal ¥y 2)))))
(othervise £)))

(defn apply4 (fa v x y z)
(case fn

(and4 (and w x y 2))
(or4 (or v x y 2))
(nand4 (not (and v x y 2z)))
(nord (not (or v x ¥ 2)))
(xor4 (not (equal w (not (equal x (not (equal y z)))))))
{othervise f£)))

(defn applys (fn v w x y z)

(case fn
(andS (and v w x y 2))

55

(oxS (or vy W X ¥ 2))

(nand5 (not (and v v x y 2)))

(nor$ (not (or v v x y 2)))

(xor5 (not (equal v (not (equal w (mot (equal x (not (equal y 2DINN
(othervise f£)))

(defn eval (x a)
(if (listp x)
(case (arity (car x))
(0 (apply0 (car x)))
(1 (applyl (car x)
(eval (cadr x) a)))
(2 (apply2 (car x)
(eval (cadr x) a)
(eval (caddr x) a)))
(3 (apply3d (car x)
(eval (cadr x) a)
(eval (caddr x) a)
(eval (cadddr x) a)))
(4 (apply4 (car x)
(eval (cadr x) a)
(eval (caddr x) a)
(eval (cadddr x) a)
(eval (caddddr x) a)))
(5 (apply5 (car x)
(eval (cadr x) a)
(eval (caddr x) a)
(eval (cadddr x) a)
(eval (caddddr x) a)
(eval (cadddddr x) a)))
(otherwise £))
(cdr (assoc x a))))

:;We define an "extended number” to be a number or F. (F represents
;iinfinity.) The following operations are defined on this set:

(defn emin (x y)
(it x
(it y
(if (lessp x y) x y)
x)
$2))

(defn emax (x y)
(it x
(it y
(if (lessp x y) y x)
y)
x))

(defn eaddl (x)
(it x
(addl x)
x))

(defn eplus (x y)

(if y
(it y

56

(plus x y)
y)
x))

;;“‘tt‘tt‘#ti‘-i*““t“‘ttt‘“ttt‘t‘i“*‘-‘tttt"#ttﬁ‘i**#“t.i‘l‘itl"

i WAVEFORMS ,
;;..tt“t‘ﬁ#*i.‘it!ii‘tt“tt"tl‘t.*‘**“‘."l.i#.*‘i*t*i‘tt“t.til‘ti“

iiA vaveform is a list ((va . tn) ... (vl . t1) (vo . t0)) of "events"”,
iieach of vhich associates a Boolean value vi with a time ti at which
iithe value is to be assumed by the associated signal. We require that
08 t0 < tL < .., ¢ tn and v0 <> vi < . VR

(defn vavep (w)
(if QQistp w) '
(and (boolp (caar w))
(if (listp (cdr w))
(and (vavep (cdr w))
(aumberp (cdar w))
(lessp (cdadr v) (cdar w))
(not (equal (caadr w) (caar))))
(and (equal (cdar v) 0)
(equal (cdr w) ()))))
)

iiA packet is a list of vaveforms:

(defn packetp (1 n)
(if (zerop n)
(equal 1 ())
(and (listp 1)
(vavep (car 1))
(packetp (cdr 1) (subi n)))))

i;The value of a signal at a given time is computed from its vaveform
;ias follows:

(defn wval (wave time)
(if (listp vave)
(if (lessp time (cdar vave))
(vval (cdr vave) time)
(caar wave))
1))

(defn pval (packet time)
(it (listp packet)
(cons (wval (car packet) time)
(pval (cdr packet) time))
o»

;iHistories:

(defn whist (wave time)
(if (listp wave)
(if (lessp time (cdar vave))
(vhist (cdr wave) time)
vave)

vave))

(defn phist (packet time)
(it (listp packet)
(cons (whist (car packet) time)
(phist (cdr packet) time))
02))

;;To determine whether some waveform of a packet acquires a new value
;sat a given time:

(defn wnewp (wave time)
(it (listp wvave)
(if (lessp time (cdar wave))
(vnewp (cdr wave). time)
(equal time (cdar wave)))
)

(defn pnewp (packet time)
(if (listp packet)
(or (wnewp (car packet) time)
(pnewp (cdr packet) time))
D)

; ;The basic propagation functions:

(defn trans (w v tv)
(it (listp W)
(if (lessp (cdar w) tv)
(it (equal (caar w)} v)
v
(cons {(cons v tv) w))
(trans (cdr w) v tv))
1))

(defn inert (w v tO tv)
(it (listp w)
(if (equal (wval w t0) v)
(vhist v t0)
(if (lessp (cdar w) tv)
(it (equal (caar w) v)
{cons (car w) (whist w t0))
(cons (cons v tv) (whist w t0)))
(inert (cdr w) v t0 tv)))
)

I ERERRRA AR AR RN AR RR R R AR R AR R RR R AR kR R R s et b A
; BEHAVIORAL MODULES

H t#“tt“‘#######.‘i‘tt#“‘ﬁtt‘tit“*‘#‘“‘t#‘i‘#tt“t‘t*#‘t“lllllttt.

+;A behavioral module is a list M = (BEHAV I 0RPD), vhere

;5 I is a list of litatoms, the inputs of M

;3 0 is a list of litatoms, the outputs of M

;; R is a list of elementary Boolean terms over I, corresponding to the outputs
;5 D is a list of delays corresponding to the outputs

;3 P is a list of modes (TRANS or INERT) corresponding to the outputs

58

(defn type (mod)
;a litatom
(car mod))

(disable type)
(defn behavp (m) (equal (type m) ’behav))

(defn i (mod)
;a list of litatoms
(cadr mod))

(disable i)

(defn o (mod)
;a list of litatoms
(caddr mod))

(disable o)

(defn ni (mod)
(length (i mod)))

(defn no (mod)
(length (o mod)))

(defn r (mod)
;a list of Boolean terms
(cadddr mod))

(defn d (mod)
;a list of positive numbers
(caddddr mod))

(disable d)

(defn p (mod)
;a list of litatoms
(cadddddr mod))

(disable p)

(defn distinct-symbols (1)
(if (listp 1)
(and (litatom (car 1))
(not (member (car 1) (cdr 1)))
(distinct-symbols (cdr 1)))
t))

(defn check-modes (modes)
(if (listp modes)
(and (member (car modes) ’(trans inert))
(check-modes (cdr modes)))
t))

(defn check-delays (delays)
(if (listp delays)
(and (not (zerop (car delays)))
(check-delays (cdr delays)))

59

[N

t))

{defn check-behav (m)

(and (distinct-symbols (append (i m) (o m)))
(equal (length (r m)) (length (o m)))
(termp$ ’'list (r m) (i m))

(equal (length (d m)) (length (o m)))
(check-delays (d m))

(equal (length (p m)) (length (o m)))
(check-modes (p m))))

(defn post-event (v v t0 mode delay)
(case mode
(trans (trans ¥ v (plus t0 delay)}))
(inert (inert w.v t0 (plus t0 delay)))
(othervise £)))

(defn post-events (packet outs pval t0 modes delays m)
(if (listp packet)
(cons (post-event (car packet)
(eval (car outs)
(pairlist (i m) pval))
t0
(car modes)
(car delays))
(post-events (cdr packet)
(cdr outs)
pval
t0
(cdr modes)
(cdr delays)
m))
O»

;;The semantics of behavioral modules are defined by a function EXEC of

;ifour arguments: (1) a module N, (2) an input packet INP, (3) an output packet
;10UTP, and (4) a time TO. The value returned is the result of updating OUTP

; By "executing" M on the input INP at time TO:

(defn exec (m inp outp tO0)
(post-events outp (r m) (pval inp t0) t0 (p m) (d m) m))

::Gates are modeled as behavioral modules with inertial delay:

(defn t0 O
"(behav () (t) ((t0)) (2000} (inert)))

(detn £0 ()
'(behav () (£) ((£0)) (2000) (imert)))

(defn notl ()
' (behav (a) (b) ((not1 a)) (2000) (inert}))

(defa and2 ()
' (behav (a b) (c) ((and2 a b)) (2000) (inert)))

(defn or2 () 7
*(behav (a b) (c) ((or2 a b)) (2000) (inert)))

60

(defn nand2 ()
'(behav (a b) (c) ((nand? a b)) (2000) (inert)))

s

(defn nor2 ()
'(behav (a b) (¢) ((nor2 a b)) (2000) (inert)))

(defn xor2 ()
'(behav (a b) (¢) ((xor2 a b)) (2000) (inert)))

(defn and3 ()
*(behav (a b ¢) (d) ((and3 a b €)) (2000) (inert)))

(defn or3 ()
‘(behav (a b ¢) (d) ((or3 a b €)) (2000) (inert)))

(defn nand3 ()
’(behav (a b ¢) (d) ((nand3 a b €)) (2000) (inert)))

(defn nor3 ()
'(behav (a b ¢) (d) ((nor3 a b €)) (2000) (inert)))

(defn xor3 ()
'(behav (a b c) (d) ((xor3 a b c)) (2000) (inert)))

(defn and4 ()
"(behav (a b c d) (e) ((and4 a b ¢ d)) (2000) (inert)))

(defn or4 ()
'(behav (a b ¢ d) (e) ({ord a b c d)) (2000) (inert)))

(defn nand4 ()
'(behav (a b c d) (e) ((nandd a b ¢ d)) (2000) (inert)))

(defn nord ()
’(behav (a b ¢ d) (e) ((nort a b e d)) (2000) (inert)))

(defn xor4 ()
'(behav (a b ¢ d) (e} ((xor4 a b cd)) (2000) (inert)))

(defn and§ ()
"(behav (a b ¢ d o) (g) ((and5 a b ¢ d o)) (2000) (inert)))

(defn ors ()
"(behav (a b c d e) (g) ((or5 a b ¢ d e)) (2000) (inert)))

(defn nands ()
"(behav (a b ¢ d) (8) ((nand5 a b ¢ d e)) (2000) (inert)))

(defn nors ()
’(behav (a b ¢ d e) (g) ((mor5 a b ¢ d e)) (2000) (inert)))

(defn xor5 ()
"(behav (a b c d e) (g) ((xor5 a b c 4 e)) (2000) (inert)))

;;ilt*ttlti*i“‘tl#t‘l‘t*t“t“t‘ii‘tt**t.!'*i“it“‘t.tit‘tittit*#ﬁ‘*

H STRUCTURAL MODULES
;;ttt!tittitit‘tt“t*‘ttt*tt‘ttttt“‘ttttt‘ttt"-tttttttt-ttttttitti‘i

61

::a structural module is a list M = (STRUCT I O S LI LO), where

;; I is a list of (global) inputs

;7 D0 is a list of (global) outputs

73 S is a list of submodules

LI is a list of local inputs: each member of LI is a list representing

HH the inputs to the corresponding submodule
:: LI is a list of local outputs: each member of LI is a list representing
1 the outputs to the corresponding submodule

(defn structp (m) (equal (type m) ’struct))

(defn s (m)
;a list of modules
(cadddr m))

(disable 8)

(defn 1li (m)
;a list of lists of litatoms
(caddddr m))

(disable 1i)

(defn lo (m)
;a list of lists of litatoms
(cadddddr m))

(disable 1lo)

(defn lookupl (key keys list)
(if (listp keys)
(if (member key (car keys))
(car list)
(lookupl key (cdr keys) (cdr list)))
9D

(defn find-lo (out m)
(lookupl out (lo mw) (lo m)))

(defn find-s (out m)
(lookupl out (lo m) (s m)))

(defn find-1i (out m)
(lookupl out (lo m) (1i m)))

(defn lookup (key keys list)
(if (listp keys)
(if (equal key (car keys))
(car list)
(lookup key (cdr keys) (cdr list)))
)}

(defn find-o (out m)
(lookup out (find-lo out m) (o (find-s out m})))

(defn match-inputs (subins subs)
(if (listp subs)

62

(and (listp subins)
(equal (length (car subins)) (ni (car subs)))
(match-inputs (cdr subins) (cdr subs)))
t))

(defn match-outputs (subouts suba)
(it (listp subs)
(and (equal (length (car subouts)) (no (car subs)))
(match-outputs (cdr subouts) (cdr subs)))
)

(defn appears (x 1)
(if (listp 1)
(or (member x (car 1))
(appears x (cdr 1)))
1))

(defn all-appear (1 m)
(it (listp 1)
(and (appears (car 1) m)
(all-appear (cdr 1) m))
t))

(defn lists-all-appear (1s m)
(if (Qistp 1ls)
(and (all-appear (car 1ls) m)
(lists-all-appear (cdr ls) m))
t))

(defn none-appear (1 m)
(it (listp 1)
(and (not (appears (car 1) m))
(none-appear (cdr 1) m))
t))

(defn all-distinct-symbols (ls)
(it (listp 1s)

(and (distinct-symbols (car 1ls))
(none-appear (car 1s) (cdr ls))
(all-distinct-symbols (cdr 1s)))

t))

(defn check-struct (m)

(and (equal (length (1i m)) (length (s m)))
(match-inputs (1i m) (s m))
(equal (length (1o m)) (length (s m)))
(match-outputs (lo m) (s m))
(all-appear (o m) (lo m))
(lists~all-appear (1i m) (cons (i m) (lo m)))
(all-distinct-symbols (coms (i m) (lo m)))))

(prove-lemma lessp-count-submodules (revrite)
(implies (equal (type m) ’struct)
(equal (lessp (count (s m)) (count m)) t))
((enable s type)))

(defn modulep$ (flag m)

(if (equal flag ’list)
(it (listp m)

63

(and (modulep$ t (car m))
(modulep$ ’'list {cdr m)))
(equal m ()))
(case (type m)
(struct
(and (check-struct m)
(modulep$ ’list (s m))))
(behav
(check~behav m))
(othervise £))))

(prove-lemma plistp-s ()
(implies (modulep$ ’list s)
(plistp 8)))

(defn modulep (m)
(modulep$ t m))

(prove-lemma plistp-s-m (revrite)
(implies (and (structp m) (modulep m))
(plistp (s m)))
((use (plistp-s (s (s m))))))

;;For a given structural module M, a bundle is an object that consists of
;;a vaveform corresponding to each output of each behavioral component of M

(defn bundlep$ (flag b m)
(if (equal flag ’list)
(if (listp m)
(and (bundlep$ t (car b) (car m))
(bundlep$ ’‘list (cdr b) (cdr m)))
(equal b ()))
(it (structp m)
(bundlep$ ‘'list b (s m))
(packetp b (no m)))))

(defn bundlep (b m) (bundlep$ t b m))
;;An output packet for M may be extracted from a bundle for M as follows:

(defn select-vave (key signals packets)
(if (listp packets)
(it (member key (car signals))
(lookup key (car signals) (car packets))
(select-wave key (cdr signals) (cdr packets)))
190

(defn select-packet (keys signals packets)
(it (listp keys)
(cons (select-wave (car keys) signals packets)
(select-packet (cdr keys) signals packets))
O»

(defn outp$ (flag m b)
(if (equal flag ’list)
(it (listp m)
(cons (outp$ t (car m) (car b))
(outp$ flag (cdr m) (cdr b))
0)}

64

(case (type m)
(struct (select-packet (o m) (lo m) (outp$ ’list (s m) b)))
(behav b)
(othervise £))))

(defn outp (m b) (outp$ t m b))

iiA list of input packets for the submodules of M may be extracted from
;;an input packet and a bundle for M as follows:

(defn input-packet (ins p b m)
(select-packet ins

(cons (i m) (lo m))

(cons p (outp$ ’'list (s m) b))))

(defn input-packets (ins p b m)
(if (listp ins)
(cons (input-packet (car ins) p b m)
(input-packets (cdr ins) p b m))
0O»

(defn inps (m p b)
(input-packets (1i m) p b m))

; iThe semantics of structural modules are defoned by a function STEP of

i;four arguments: (1) a module M, (2) an input packet P for M, (3) a bundle

iiB for M, and (4) a time TO. The value is the result of updating B by executing
iieach behavioral component of M for which some input acquires a new value

;:at time TO:

(defn step$ (flag m p b t0)
(if (equal flag ’list)
(it (listp m)
(cons (step$ t (car m) (car p) (car b) t0)
(step$ ’list (cdr m) (cdr p) (cdr b) t0))
16D
(case (type m)
(struct (step$ ’list (s m) (inps m p b) b t0))
(behav (if (pnewp p t0) (exec m p b t0) b))
(othervise £))))

(defn step (m p b t0) (step$ t m P b t0))

;examples:

(defn adder2 ()
‘(struct (a b ¢) (1 h)
(,(nand2?) ,(nand2) ,(nand2) ,(nand2) ,(nand2) ,(nand2) ,(nand2) ,(nand2) ,(nand2))
((a b) (a t1) (b t1) (2 t3) (c t4) (t5 t4) (c t5) (t§ t1) (t7 t6))
((t1) (t2) (e3) (t4) (t5) (t6) (£7) (h) (1))

(defn dff ()
‘(struct (clk rst d) (q qn)
(,(not1) ,(and2) ,(nand2) ,(nand2) ,(nand3) ,(nand?2) ,(nand2) ,(nand2))
({rst) (rn d) (b2 b1) (at clk) (b1 clk b2) (a2 dd) (b1 qn) (q a2))
((rn) (dd) (a1) (b1) (a2) (b2) (q) (qn)}))

65

(defn fnand2 ()
'(behav {a b) (c¢) ((nand2 a b)) (1000) (inert)))

(defn dlatch ()
t{struct (clk d) (s2)
(,(not1) ,(nand2) ,(nand2) ,(fnand2))
((clk) (clk d) (s1 s3) (30 s2))
((s0) (s1) (82) (83))))

HH Prrppparanpaperrer et T T YT T T PRI TSP R LR R RS ALT SIS DAL S22 R AL A LAl Al el b g

H SIMULATION
R T L R L e AL I L L L Ll bbb bt bl d bbbk

;;The top-level simulation function SIM takes three arguments: (1) a module
;i4, (2) an input packet P for M, and (3) a termination time TF. The value
;ireturned is the bundle produced by simulating M with input P over the
;;interval from O to TF.

;:The time at which each simulation cycle occurs is computed by the functien
;;TNEXT. Its arguments are (1) the time TO of the last simulation cycle,
;;(2) the input packet P, (3) the curent bundle B, and (4) the module M.
:;The value returmed is the time of the earliest event occurring in either
;P or B that is later than TO, if such an event exists, and F otherwise.

(defn tnextw (wave t0)
(it (listp wave)
(if (lessp tO (cdar wave))
(if (lessp tO (cdadr wvave))
(tnextw (cdr wave) t0)
(cdar wave))
t)
)

(defn tnextp (p t0)
(it (listp p)
(emin (tnextw (car p) t0)
(tnextp (cdr p) t0))
)

(defn tnextb$ (flag bun m t0)
(it (equal flag ’list)
(it (listp m)
(emin (tnextb$ t (car bun) (car m) tO)
(tnextb$ ’'list (cdr bun) (cdr m) t0))
1)
(case (type m)
(struct (tnextb$ ’list bun (s m) t0))
(behav (tnextp bun t0))
(othervise £))))

(defn tnext (t0 p b m)
(smin (tnextp p t0) (tnextb$ t b m t0)))

;iThe function RUN is the guts of the simulator. Its arguments are
:;(1) a module M, (2) an input packet P, (3) am initial bundle B,
::(4) an initial time TO, and (5) a termination time TF. It simulates
:;N over the interval from TO to TF, repeatedly calling STEP.

66

(prove-lemma lessp-tnextw (rewrite)
(implies (tnextw w t0)
(lessp t0 (tnextw w t0))))

(prove-lemma lessp-tnextp (revrite)
(implies (tnextp p t0)
(lessp t0 (tnextp p t0))))

(prove-lemma lessp-tnext-b (rewrite)
(implies (tnextb$ flag b m t0)
(lessp tO (tnextb$ flag b m £0))))

(prove-lemma lessp-tnext (rewrite)
(implies (tnext t0 p b m)
(lessp t0 (tnext t0 p b m))))

(defn run (m p b t0 tf)
(let ((tnext (tnext t0 p b m)))
(if (and tnext (leq tnext tf))
(run m p (step m p b tnext) tnext tf)
b))
((lessp (difference tf t0))))

1;SIM calls RUN with an initial time TO = 0 and an initial bundle that
;ile computed by first associating the trivial waveform ((F . 0)) with
7ieach signal of M, and then executing every behavioral component of M:

(defn w0 () ‘((,f . 0)))

(defn b0$ (f1g m)
(if (equal flg ’list)
(if (listp m)
(cons (bO$ t (car m)) (bO$ ’list (cdr m)))
(0))
(case (type m)
(struct (b0$ ’list (s m)))
(behav (1listn (no m) (w0)))
(otherwise £))))

(defn b0 (m) (bO$ t m))

(defn init$ (flg m p)
(it (equal flg ’'list)
(it (listp m)
(cons (init$ t (car m) (car p))
(init$ ’list (cdr m) (cdr p)))
(0)]
(case (type m)
(struct (init$ ’list (s m) (inps m p (b0 m))))
(behav (exec m p (b0 m) 0))
(othervise f))))

(defn init (m p)
(init$ t m p))

(defn sim (m p tf)
(run m p (init m p) 0 tf))

67

B Properties of the Simulator

;;titt“i‘ttt#“‘t#t#"#‘t.‘t“*“‘i*iii*ttt“‘tt“‘t#tt#“‘#l“t“ttti‘ﬁit“

1 WAVEFORMS AND PROPAGATION

;;1‘tl.tt‘."t*i.i*ttttitti"tt“i“#ti‘#t‘*t‘ilt‘t#i#t't*t*.l‘tti‘.ttiliitt‘
;;The value of a vaveform at any time is a Boolean:

(prove-lemma boolp-wval (revrite)
(implies (wavep w)
(boolp (wval w t0))))

:;The value of a packet at any time is a bit vector:

(prove-lemma bvp-pval (revrite)
(implies (packetp p n)
(bvpn (pval p t0) mn))
{(disable boolp)))

;:Any history of a waveform is a waveform:

(prove-lemma wavep-vwhist (revrite)
(implies (wavep w)
(vavep (whist w t0)})))

(prove-lemma listp-vhist (rewrite)
(implies (wavep W)
(listp (whist w t0))))

;;The history of a waveform W w.r.t. at time TO has the same value
;;at TO as W:

(prove-lemma whist-value (revrite)
(equal (wval (vhist w t0) t0)
(wval w t0))}

(prove-lemma wval-caar-vhist (rewrite)
(implies (wavep w)
(equal (wval w t0) (caar (whist w t0)))))

(disable wval-caar-whist)

(prove-lemma leq-cdar-whist-t0 (revrite)
(implies (wavep w)
(not (lessp tO (cdar (whist ¥ t0))))))

(prove-lemma lessp-cdar-whist (revrite)
(implies (and (wavep w)
(not (equal (wval w t0) (caar w))))
(lessp (cdar (whist w t0)) (cdar w))))

;;The history of W w.r.t. TO has a constant value for all Ti1 >= TO:

(prove-lemma wval-whist (rewrite)
(implies (and (wavep v)

(leq t0 t1))
(equal (wval (whist v tO) ti)
(caar (whist w t0)))))

68

(prove-lemma leq-cdar-vhist (rewrite)
(not (lessp t0 (cdar (whist w t0)))))

(prove-lemma leq-cdar-vhist-tO-rewvrite (reurite)
(implies (and (wavep w)

(lessp t0 tv))
(equal (lessp (cdar (whist v t0)) tv) t))
((use (leq-cdar-whist-t0))))

;;Both propagation functions, TRANS and INERT, transform waveforms
;;into waveforms:

(prove-lemma wavep-trans (rewrite)
(implies (and (vavep w)

(boolp v)

(not (zerop t0)))
(vavep (trans w v t0))))

(prove-lemma wavep-inert (revrite)
(implies (and (wavep w)

(boolp v)

(lessp t0 tv))
(vavep (inert w v t0 tv)))
((induct (inert w v t0 tv))
(disable boolp)
(enable wval-caar-whist)))

i ;Both propagation functions are "nonretroactive", ji.e., do not
iialter the history of a waveform v.r.t. the current time:

(prove-lemma trans-nonretroactive (rewrite)
(implies (and (vavep wave)
(lessp t0 t1))
(equal (vhist (trans vave val t1) t0)
(vhist wave t0))))

(prove-lemma inert-nomretroactive (rewrite)
(implies (and (wavep wave)
(lessp t0 tv))
(equal (vhist (inert wave val tO tv) t0)
(wvhist vave t0)))
((induct (inert wave val t0 tv))))

;;The predicate WCONP determines vhether a waveform W has a constant
;ivalue V over a time interval (T1,T2):

(defn wconp (v v t1 t2)
(it (listp w)
(if (lessp (cdar w) t2)
(and (leq (cdar w) t1)
(equal (caar @) v))
(wconp (cdr w) v t1 t2))
1)

(prove-lemma wval-wconp (revrite)
(implies (and (wconmp w v t1 t2)

(wvavep w)

(leq t1 tp)

69

Ll .

{lessp tp t2))
(equal (wval w tp) v)))

;:The vaveform (TRANS W V TV) has the constant value V
;ifor all T2 >= TV:

(prove-lemma wconp-trans-1 (rewrite)
(implies (and (wavep W)

(not (zerop tv))

(lessp tv t2))
(vconp (trans w v tv) v tv t2)))

;;The vaveform (INERT W V TO TV) has the constant value V
;ifor all T2 >= TV:

(prove-lemma wconp-inert-1 (rewrite)
(implies (and (wavep W)

(lessp t0 tv)

(lessp tv t2))
(uconp (inert w v t0 tv) v tv t2))
((enable wval-caar-vhist)))

;:IJf W has the constant value U over [T1, T2), where T1 <= T2 <= TV,
;;then s0 does (TRANS W V TV):

(prove-lemma wconp-trans-2 (rewrite)
(implies (and (wavep w)

(vconp w u tl1 t2)

(leq t1 t2)

(leq t2 tv)

(not (zerop t2)))
(wconp (trans w v tv) u tl t2)))

;;If W has the constant value U over [T1,T2), where
;;TL <= TO <= T2 <= TV, then so does (INERT W V TO V):

(prove-lemma wconp-inert-2 (rewrite)
(implies (and (wavep W)

(weconp w u t1 t2)

(lessp t0 tv)

(leq t1 t0)

(leq t0 t2)

(leq t2 tv))
(vconp (imert w v t0 tv) u ti t2)))

;;Both propagation functions are "idempotent" in the following sense:

(prove-lemma trans-trans (revrite)
(implies (and (wavep W)

(leq tvl tv2))
(equal (trans (trams v v tvl) v tv2)
(trans w v tv1))))

(prove-lemma inert-inmert (rewrite)
(implies (and (vavep w)
(lessp t01 tvl) (lessp t02 tv2)
(lessp t01 t02) (lessp tvl tv2))
(equal (inmert (inert v v t01 tvi) v t02 tv2)
(inert w v t01 tvi)))

70

((induct (inert w v t01 tvi))
(enable wval-caar-whist)))

(disable trans)
(disable inert)
H A LS L ET ST LT kg (AT T —.*‘t‘t‘t***“‘tﬁ*"‘“.“‘tt“‘tt‘t

i BEHAVIORAL MODULES
R Rt e i L

iiExecution of a behavioral module depends only on the current value of
yithe input (i.e., it is independent of both past and future input):

(prove-lemma exec-comb (rewrite)
(implies (equal (pval p1 t0) (pval p2 t0))’
(equal (equal (exec m pi pout t0) (exec m p2 pout t0))
t))

(prove-lemma exec-nonret-i ()
(implies (and (check-delays d) (equal (length d) n)
(check-modes pm) (equal (length pm) n)
(packetp pout n))
(equal (phist (post-events pout r inv t0 pan d m) t0)
(phist pout t0))))

i iExecution is "nonretroactive”, i.e., does not alter the history of
; ithe output packet:

(prove-lemma exec-nomretroactive (rewrite)

(implies (and (modulep m)
(behavp m)
(packetp pout (no m)))

(equal (phist (exec m pin pout t0) t0)
(phist pout t0)))
((use (exec-monret-1 (d (d m)) (pm (p m)) (n (no m))
(r (r m)) (inv (pval pin t0))))))

(prove-lemma exec-idem-1 ()
(implies (and (check-delays d) (equal (length d) n)
(check-modes pm) (equal (length pm) n)
(packetp pout n)
(lessp t0 t1))
(equal (post-events (post-events pout r inv t0 pm d m)
r inv t1 pm d m)
(post-events pout r inv t0 pm d m))))

iiExecution is "idempotent" in the folloving sense:

(prove-lemma exec-idempotent (rewrite)
(implies (and (modulep m)
(behavp m)
(packetp pout (no m))
(lessp t0 t1)
(equal (pval pin t0) (pval pin t1)))
(equal (exec m pin (exec m pin pout t0) t1)
(exec m pin pout t0)))
((use (exec-idem-1 (d (d m)) (pm (p m)) (n (no m))
(r {r m)) (inv (pval pin t0))))))

71

;;We shall prove that under normal conditions, execution always
;iproduces a valid output packet. We must first show that evaluation
;;0f a Boolean term always produces a Boolean value:

(prove-lemma boolp-apply0 (rewrite)
(boolp (apply0 fmn)))

(prove-lemma boolp-applyl (rewrite)
(boolp (applyl fn x)})

(prove-lemma boolp-apply2 (rewrite)
(boolp (apply2 fn x ¥)))

(prove-lemma boolp-apply3 (rewrite)
(boolp (apply3 fn x y z)))

(prove-lemma boolp-apply4 (rewrite)
(boolp (apply4 fn W x y z)))

(prove-lemma boolp-apply5 (rewrite)
(boolp (applys fn v w X ¥ 2)))

(prove-lemma boolp-eval-list (rewrite)
(implies (listp x)
(boolp (eval x a)))
((expand (eval x a))
(disable applyO applyl apply?2 apply3 apply4 apply5 boolp arity)))

(prove-lemma boolp-eval-nlistp (rewrite)
(implies (and (termp$ t term i) (nlistp term)
(bvpn pval (length i)))
(boolp (eval term (pairlist i pval)))))

(prove-lemma boolp-eval (revrite)
(implies (and (termp$ t term i)
(bvpn pval (length i)))
(boolp (eval term (pairlist i pval))))
((expand (eval x a))
(disable apply0 applyl apply2 apply3 apply4 apply5 boolp arity)))

(defn ppe-induct (d pm r pout n)
(it (zerop n)
t
(ppe-induct (cdr d) (cdr pm) (edr r) (cdr pout) (subl n))))

(prove-lemma packetp-post-events ()
(implies (and (check-delays d) (equal (length d) n)
(check-modes pm) (equal (length pm) n)
(termp$ ’list r (i m)) (equal (length r) n)
(bvpn inv (length (i m)))
(packetp pout n))
(packetp (post-events pout T inv tO pm d m) n))
((induct (ppe-induct d pm r pout n})))

(prove-lemma packetp-exec (rewrite)
(implies (and (modulep m)

(behavp m)

(packetp pin (length (i m)))

72

(packetp pout (length (o m))))
(packetp (exec m pin pout £0) (length (o m))))
((use (packetp-post-events
(d (dm)) (pm (p m)) (r (r m)) (n (no m)) (inv (pval pin t0))))))

HH .Ott“ti‘itttttlt‘ttt‘i‘itii‘tt*t.ii‘itﬁiii‘it*““tii‘t“*t‘t‘it“i“*tt‘t

HY STRUCTURAL MODULES
AA At i d D P,

i;We extend the notion of "history" to bundles in the natural vay:

(defn bhist$ (flag b m t0)

(if (equal flag ‘list)

(it (listp m)

(cons (bhist$ t (car b) (car m) t0)
(bhist$ 'list (cdr b) (cdr m) t0))
(0)]

(it (structp m)
(bhist$ ’list b (s m) t0)
(phist b t0))))

(defn bhist (b m t0)
(bhist$ t b m t0))

(prove-lemma step$-nonret ()
(implies (and (modulep$ flag m)
(bundlep$ flag b m))
(equal (bhist$ flag (step$ flag m p b t0) m t0)
(bhist$ flag b m t0)))
((disable exec)))

;iSTEP is "nonretractive", i.e., does not alter the history of
jiits third argument:

(prove-lemma step-nonretroactive (rewrite)
(implies (and (modulep m)
(tundlep b m))
(equal (bhist (step m p b t0) m t0)
(bhist b m t0)))
((use (step$-nonret (flag t)))))

(prove-lemma whist-lookup (rewrite)
(implies (equal (phist pi t0) (phist p2 t0))
(equal (equal (whist (lookup z v p1) t0)
(vhist (lookup z v p2) t0))
t)))

(defn phist$ (flag p t0)

(it (equal flag ’list)

(if (listp p)

(cons (phist$ t (car p) t0)
(phist$ ’list (cdr p) t0))
(0]

(phist p t0)))

(prove-lemma whist-select-wave (rewrite)
(implies (equal (phist$ ’list pl t0)

73

(phist$ 'list p2 t0))

(equal (equal (whist (select-wave z subouts pl) t0)
(vhist (select-wave z subouts p2) t0))

9

(prove-lemma phist-select-packet (rewrite)
(implies (equal (phist$ ’'list pl t0)
(phist$ ‘list p2 t0))
(equal (equal (phist (select-packet souts subouts pl) t0}
(phist (select-packet souts subouts p2) t0))
t)))

(prove-lemma phist$-outp$ (revrite)
(implies (equal (bhist$ flag bl m t0) (bhist$ flag b2 m t0))
(equal (equal (phist$ flag (outp$ flag m b1) t0)
(phist$ flag (outp$ flag m b2) t0))
LID)

(prove-lemma history-outp-submodules (rewrite)
(implies (and (structp m)
(equal (bhist bi m t0)
(bhist b2 m t0)))
(equal (equal (phist$ ’list (outp$ ’'list (s m) b1} t0)
(phist$ ’list (outp$ ’list (s m) b2) t0))
t)))

(prove-lemma phist-input-packet (rewrite)
(implies (and (structp m)
(equal (bhist bi m tO)
(bhist b2 m t0))
(equal (phist pl t0)
(phist p2 t0)))
(equal (equal (phist (input-packet ins pl bl m) t0)
(phist (input-packet ins p2 b2 m) t0))
)

(prove-lemma phist$-input-packets (rewrite)
(implies (and (structp m)
(equal (bhist bl m t0)
(bhist b2 m t0))
(equal (phist p1 t0)
(phist p2 t0)))
(equal (equal (phist$ ’list (input-packets 1li pi bl m) t0)
(phist$ 'list (input-packets 1i p2 b2 m) t0))
t))
((disable input-packet)
(induct (input-packets 1li inp s m))))

(prove-lemma phist$-inps-2 (revrite)

(implies (and (structp m)
(equal (phist$ flag pl t0)

(phist$ flag p2 t0))
(not (equal flag ’'list)))
(equal (equal (phist$ 'list (inps m pi b) t0)

(phist$ ’list (inps m p2 b) t0))

t)))

(prove-lemma whist-wnewp (rewrite)
(implies (and (wnewp wl t0)

74

(equal (whist wi tO0) (whist w2 t0)))
(vnevp w2 t0)))

(defn list-2-induct (x y)
(if (listp x)
(list-2-induct (ecdr x) (cdr y))
t))

(prove-lemma phist-pnewp (rewrite)
(implies (and (pnewp p1 t0)

(equal (phist p1 t0) (phist p2 t0)))
(pnewp p2 t0))
({induct (list-2-induct pi p2))))

(prove-lemma pval-phist ()
(equal (pval (phist p t0) t0)
(pval p £0)))

(prove-lemma equal-phist-pval (revrita)
(implies (equal (phist p1 t0) (phist p2 t0))
(equal (equal (pval pi t0) (pval p2 t0))
t))
((use (pval-phist (p p1)) (pval-phist (p p2)))))

(defn sn-induct (flag m b p1 p2)
(it (equal flag ’list)
(it (listp m)
(and (sn-induct t (car m) (car b) (car P1) (car p2))
(sn-induct flag (cdr m) (cdr b) (cdr p1) (cdr p2)))
t)
(if (structp m)
(sn-induct ’list (s m) b (inps m p1 b) (inpg m p2 b))
t)))

(prove-lemma step-nonpred-i ()
(implies (and (modulep$ flag m)
(bundlep$ flag b m)
(equal (phist$ flag p1 t0) (phist$ flag p2 t0)))
(equal (step$ flag m p1 b t0) (step$ flag m p2 b t0)))
((disable exec))
(induct (sn-induct flag m b p1 p2))))

iiUnlike EXEC, STEP depends in general on the history (and not merely
iithe current values) of the input. Hovever, STEP is "nonpredictive",
iii.e., independent of future input:

(prove-lemma step-nonpredictive (rewrite)
(izplies (and (modulep m)
(bundlep b m)
(equal (phist p1 t0) (phist p2 t0)))
(equal (equal (step m pit b t0) (step m p2 b t0))
t))
((use (step-nonpred-1 (flag t)))))

i iINPACKETP tests vhether P is a valid input packet for M:

(defn inpacketp (p m)
(packetp p (length (i m))))

75

W

(defn inpacketp$ (flag p m)
(it (equal flag ’'list)
(if (listp m)
(and (inpacketp (car p) (car m))
(inpacketp$ ’list (cdr p) (cdr m)))
t)
(inpacketp p m)))

(prove-lemma wavep-lookup (revrite)
(implies (and (packetp v n)
(equal (length v) n)
(member z v))
(vavep (lookup z v ¥))))

(defn packetp$ (flag p n)
(if (equal flag ’list)
(it (listp n)
(and (packetp (car p) (car n))
(packetp$ ’liat (cdr p) (cdr n)))
L)
(packetp p n)))

(defn length$ (flag 1)
(it (equal flag ’list)
(if (listp 1)
(cons (length (car 1)) (length$ ’list (cdr 1)))
M
(length 1)))

{prove-lemma vavep-select-vave (rewrite)
(implies (and (packetp$ 'list p ns)
(equal (length$ ’list subouts) ns)
(appears z subouts))
(vavep (select-vave z subouts p))))

(prove-lemma packetp$-select-packet (rewrite)
(implies (and (packetp$ ’list p ns)
(equal (length$ ’list subouts) uns)
(all-appear souts subouts))
(packetp (select-packet souts subouts p)
(length souts))))

(defn no$ (flag mod)
(it (equal flag 'list)
(if (listp mod)
(cons (no (car mod))
(no$ ’list {(cdr mod)))
0D
(no mod)))

(prove-lemma match-outputs-length$ (rewrite)
(implies (and (match-outputs x y)

(equal (length x) (length y)))
(equal (length$ ’list x) (no$ ’'list y))))

(prove-lemma packetp-output-packet-1 (rewrite)
(implies (and (packetp$ ’'list
(outp$ ‘list s (s mod))
(no$ ’list (s mod)))

76

(structp mod)
(modulep mod))
(packetp (select-packet (o mod)
(lo mod)
(outp$ 'list s (s mod)))
(no mod))))

(prove-lemma packetp$-outp$ (rewrite)
(implies (and (modulep$ flag m)
(bundlep$ flag b m))
(packetp$ flag
(outp$ flag m b)
(no$ flag m)))
({(disable packetp)))

(prove-lemma packetp$-outp$-list (revrite)
(implies (and (structp mod)
(modulep mod)
(bundlep b mod))
(packetp$ ’list
(outp$ ’'list (s mod) b)
(no$ 'list (s mod)))))

(prove-lemma packetp-length (rewrite)
(implies (packetp p n)
(packetp p (length p))))

(prove-lemma packetp$-cons-inp-outs (rewrite)
(implies (and (structp m)
(modulep m)
(bundlep b m)
(inpacketp p m))
(packetp$ ’list
(cons p (outp$ ’'list (s m) b))
(cons (length p) (length$ ’list (lo m)))))
((disable bundlep)))

(prove~lemma packetp$-select-packet-2 (rewrite)
(implies (and (packetp$ ’list p (length$ ’list p))
(equal (length$ ’list subouts) (length$ ’list p))
(all-appear souts subouts))
(packetp (select-packet souts subouts p)
(length souts))))

(prove-lemma length-select-packet (revrite)
(equal (length (select-packet x ¥y 2))
(length x)))

(prove-lemma length-packet (rewrite)
(implies (packetp p n)
(equal (length p) (fix n))))

(prove-lemma length-outp (rewrite)
(implies (and (bundlep b m)
(modulep m))
(equal (length (outp$ t m b))
(oo m)))
(Cexpand (outp$ t m b))))

77

i

ek

(prove-lemma length$-outp$ (revrite)
(implies (and (bundlep$ flag b m)
(modulep$ tlag m))
(equal (length$ flag (outp$ flag m b))
(no$ flag m))))

(prove-lemma length-lo ()
(implies (and (modulep m)
(structp m))
(equal (no$ ’list (s m))
(length$ 'list (1o m}))))

(prove-lemma packetp-input-packet (rewrite)
(implies (and (structp m)
(modulep m)
(bundlep b m)
(inpacketp p m)
(all-appear ins (coms (i m) (lo m))))
(packetp (input-packet ins p b m) (length ins)))
((disable packetp$ length-packet)
(use (length-lo)
(length-packet (n (length (i m})))))
(expand (bundlep$ t b m))))

(prove-lemma packetsp-input-packets (revrite)
(implies {(and (structp m)
(modulep m)
(bundlep b m)
(inpacketp p m)
(lists-all-appear 1i (coms (i m) (lo m))))
(packetp$ 'list
(input-packets 1i p b m)
(length$ 'list 1i)))
((disable input-packet)
(induct (input-packets 1li p b m))))

(defn ni$ (flag m)
(if (equal flag ’'list)
(it (listp m)
(cons (ni (car m))
(ni$ ’list (cdr m)))
(0]
(ni m)))

(prove-lemma inpacketp$-packetp$ (O
(equal (inpacketp$ ’list p s)
(packetp$ ’list p (ni$ ’list s))))

{prove-lemma match-inputs-length$ (rewrite)
(implies (and (match-inputs x y)

(equal (length x) (length y)))
(equal (length$ ‘list x) (ni$ 'list y))))

(prove-lemma packetp$-1li ()
(implies (and (modulep m)
(structp m))
(equal (inpacketp$ 'list p (s m))
(packetp$ ’1list p (length$ 'list (1i m)))))
((use (inpacketp$-packetp$ (s (s m)}))))

78

(prove-lemma inpacketp$-inps (revrite)
(implies (and (structp m)
(modulep m)
(bundlep b m)
(inpacketp p m))
(inpacketp$ ’list (inps m p b) (s m)))
((expand (modulep$ t m))
(disable match-inputs-length$)
(use (packetp$-1i (p (imps m p b))))))

(prove-lemma bundlep$-step$ ()
(implies (and (modulep$ flag m)
(inpacketp$ flag p m)
(bundlep$ flag b m))
(bundlep$ flag (step$ flag m p b t0) m))
((disable exec check-behav inps)))

iiUnder normal conditions, STEP always produces a valid bundle:

(prove-lemma bundlep-step (rewrite)
(implies (and (modulep m)
(inpacketp p m)
(bundlep b m))
(bundlep (step m p b t0) m))
((use (bundlep$-step$ (flag t)))))

HH Otttti“i#‘i‘tlﬁ*t*tit‘ti"*ti*i‘iiliit*#"#'.ittt‘#i‘t#‘*#‘iiii--tttit‘ittt

H SIMULATION
e St L T

(prove-lemma whist-whist ()
(implies (leq tO t1)
(equal (whist w t0)
(vhist (whist w t1) t0))))

(prove-lemma equal-vhist-leq (revrite)
(implies (and (equal (whist wl t1) (whist w2 t1))
(leq t0 t1))
(equal (equal (whist wi t0) (whist w2 t0))
t))
({use (vhist-vhist (v w1)) (vhist-vhist (v w2)))))

(prove-lemma equal-phist-leq (revrite)
(implies (and (equal (phist bi t1) (phist b2 t1))
(leq t0 t1))
(equal (equal (phist bl t0) (phist b2 t0))
t))
((induct (list-2-induct bl b2))))

(prove-lemma equal-bhist$-leq ()

(implies (and (equal (bhist$ flag bl m t1) (bhist$ flag b2 m t1))
(leq t0 t1))

(equal (bhist$ flag bi m t0) (bhist$ flag b2 m t0))))

(prove-lemma equal-bhist-leq (rewvrite)

(implies (and (equal (bhist bl m t1) (bhist b2 m t1))
(leq t0 t1))

79

(equal (equal (bhist bl m t0) (bhist b2 m t0))
t))
((use (equal-bhist$-leq (flag t)))))

;;RUN is "nomretroactive”, i.e., does not alter the history of the
;;bundle B w.r.t. the initial time TO:

(prove-lemma run-nomretroactive (rewrite)
(implies (and (modulep m)
(bundlep b m)
(inpacketp p m)) .
(equal (bhist (run m p b t0 tf) m t0)
(bhist b m t0)))
((disable step bundlep modulep inpacketp bhist)))

(prove-lemma tnextw-tnextw (rewrite)
(implies (and (lessp tp (tmextw ¥ t0))
(vavep w)
(leq t0 tp))
(equal (tnextw w tp) (tnextw w t0))))

(prove-lemma leq-tnextw-cdar (rewvrite)
(implies (and (wavep w)

(lessp t0 {cdar w)))
(not (lessp (cdar w) (tnextw w t0)))))

(prove-lemma tnextw-tnextw-2 (revrite)
(implies (and (tnextw w tp)
(vavep w)
(leq t0 tp))
(not (lessp (tnextw w tp) (tnextw w t0)))))

(prove-lemma tnextp-true (revrite)
(implies (and (not (lessp tp t0))
(tnextp p tp))
(tnextp p t0)))

(prove-lemma tnextw-true (rewrite)
(implies (and (mot (lessp tp t0))
(tnextv w tp))
(tnextv w t0)))

(prove-lemma tnextp-tnextp (Tevrite)
(implies (and (packetp p n)
(lessp tp (tnextp p t0))
(leq t0 tp))
(equal (tnextp p tp) (tnextp p t0)))
((disable tnextw wavep)))

(prove-lemma tnextb$-true (rewrite)
(implies (and (not (lessp tp t0))
(tnextb$ flag b m tp))
(tnextb$ flag b m t0)))

(prove-lemma tnextb$-tnextb$ (rewrite)
(implies (and (modulep$ flag m)

(bundlep$ flag b m)

(lessp tp (tnextb$ flag b m t0))

(leg t0 tp))

80

(equal (tnextb$ flag b m tp) (tnextb$ flag b m t0))))

(prove-lemma lessp-emin ()
(implies (and x y (lessp m (emin x $22))
(and (lessp m x) (lessp m y))))

(prove-lemma tnext-tnext (rewrite)

(implies (and (modulep m)
(bundlep b m)
(inpacketp p m)
(lessp tp (tnext t0 p b m))
(leq t0 tp))

(equal (tnext tp p b m) (tnext t0 p b m)))
((use (lessp-emin (x (tnextb$ ¢ b m t0)) (y (tnextp p t0)) (m tp)))))

(prove-lemma tnext-true (rewrite)
(implies (and (not (lessp tp t0))
(tnext tp p b m))
(tnext t0 p b m)))

:iThis lemma provides for the decomposition of a simulation interval
yiinto two subintervals:

(prove-lemma run-run ()

(implies (and (modulep m)
(bundlep b m)
(inpacketp p m)
(leq t0 tp) (leq tp tf))

(equal (run m p b t0 tf)

(run m p (run m p b 10 tp) tp tf)))

((disable step tnext bundlep modulep)

(induct (run m p b t0 t£))

(expand (run m p b tp tf) (run m p b t0 tp))))

i iUnder normal conditions, RUN always produces a valid bundle:

(prove-lemma bundlep-run (rewrite)
(implies (and (modulep m)
(inpacketp p m)
(bundlep b m))
(bundlep (run m p b t0 tf) m))
({disable modulep bundlep step inpacketp tnext)))

C Synchronous Sequential Circuits

H ;*“ttt‘*‘itt#tii“it**#“‘t#*#*"i““itttt‘lt‘tit#ttitt‘ttt“li‘tit‘#t

i COMBINATIONAL MODULES
R RSt b 2 Y

;iWe begin with the relatively simple class of "combinational® modules.
;;The definition of this class depends on a function SLEVEL$S, which
iicomputes the maximum length from any input signal to a given signal

iiof an arbitrary module. The definition of SLEVEL$S is difficult to
jiestablish for two reasons: (1) we allow arbitrarily deep hierarchical
ijmodule definitions, and (2) the desired maximum path length may not exist,

81

;:i.e., the signal may lie on a structural loop, vhich must be effectively

;;detected.

(defn unionl (1)
(if (listp 1)
(union (car 1) (unionl (cdr 1)))
O»

(defn signals (mod)
(unionl (cons (i mod) (lo mod))))

(defn delete (x 1)
(if (listp 1)
(it (equal x (car 1))
(edr 1) .
(cons (car 1) (delete x (cdr 1))))
1

(defn subbagp (1 m)
(if (Qlistp 1)
(and (member (car 1) m)
(subbagp (cdr 1) (delete (car 1) m))})
t))

(defn subsetp (1 m)
(it (listp 1)
(and (member (car 1) m)
(subsetp (cdr 1) m))
t))

{prove-lemma length-delete (revrite)
(implies (member x 1)
(equal (length (delete x 1))
(subt (length 1)))))

(prove-lemma member-delete (rewrite)
(implies (and (member x 1)

(not (equal x y)))
(member x (delete y 1))))

(prove-lemma lessp-length-subbagp (O
(implies (and (subbagp 1 m)
(member x m)
(not (member x 1)))
(lessp (length 1) (length m))))

(prove-lemma subsetp-delete (rewrite)
(implies (and (subsetp 1 m)

(not (member x 1)))
(subsetp 1 (delete x m))))

(prove-lemma subsetp-subbagp (revrite)
(implies (and (distinct-symbols 1)
(subsetp 1 m))
(subbagp 1 m))
((induct (subbagp 1 m))))

(prove-lemma lessp-length-subset (revrite)
(implies (and (subsetp 1 m)

82

(distinct-symbols 1)

(member x m)

(not (member x 1)))
(lessp (length 1) (length m)))
((use (lessp-length-subbagp))))

(defn index (s lo)
(it (listp lo)
(if (member s (car 1o))
0
(add! (index s (cdr 10))))
1))

(defn slevel$$ (flag out m bad q)
i (SLEVELSS T OUT M. () Q) is the length of the longest path to OUT that does not
ipass through any of the first Q submodules of M
(it (equal flag 'list)
(it (listp out)
(emax (slevel$$ t (car out) m bad q)
(slevel$$ ’'list (cdr out) m bad Q)
0
(if (or (member out (i m))
(lessp (index out (lo m)) q))
0
(if (and (not (member out bad))
(distinct-symbols bad)
(member out (signals m))
(subsetp bad (signals m)))
(eadd1l (slevel$$ ’list (find-1i out m) m (cons out bad) q))
DN
((ord-lessp (lex (list (difference (length (signals m)) (length bad))
(count out))))))

7 iSDEPTH returns the maximum SLEVEL$$ of all signals of M:

(defn sdepth (m q)
(slevel$$ ’list (signals m) m () q))

iiThe final argument of SLEVEL$$ will be relevant to our analysis of
;isequential modules. For the present purpose, we take it to be 0.
i;We may now define "combinational module":

(defn combp$ (flag m)
(it (equal flag ’list)
(if (listp m)
(and (combp$ t (car m))
(combp$ 'list (cdr m)))
t)
(it (modulep m)
(case (type m)
(struct (and (sdepth m 0) (combp$ 'list (s m))))
(behav t)
(othervise 1))
£)))

(defn combp (m) (combp$ t m))
;iNow that SLEVEL$$ has been defined, we may use it to define a simpler

yiversion, SLEVELS, which will be easier to use. The purpose of this

83

;:;fynction is to provide a recursion scheme for various functions
;;pertaining to combinational and sequential modules.
;;The definition will take some work:

(prove-lemma member-slevel$$ (rewrite)
(implies (and (member s 1)

(slevel$$ ’'list 1 m bad q))
(slevel$$ t = m bad q)))

(prove-lerma subsetp-slevel$$ (rewrite)
(implies (and (subsetp s 1)

(slevel$$ ’list 1 m bad q))
(slevel$$ ’list s m bad q)))

(prove-lemma signals-slevel$$ (revrite)
(implies (and (sdepth m q) (subsetp s (signals m)))
(slevel$s 'list s m () q))
((use (subsetp-slevel$$ (1 (signals m)) (bad 00)))))

(prove-lemma leq-slevel$$-cdr (revrite)
(implies (and (sdepth m q) (listp s) (subsetp s (signals m)})
(equal (lessp (slevel$$ ’list s m () q)
(slevel$$ ’list (cdr s) m () q))
i)
((use (signals-slevel§$))
(expand (slevel$$ ‘list s m () 9))))

(prove-lemma leq-slevel$$-car (rewrite)
(implies (and (sdepth m q) (listp s) (subsetp s (signals m)))
(equal (lessp (slevel$$ ’'list s m () q)
(slevel$$ t (car s) m () q))
)
((use (signals-slevel$$))
(expand (slevel$$ ’'list s m (O g))))

(defn ss-induct (flag s m badl bad2 q)
(if (equal flag ’'list)
(if (listp s)
(and (ss-induct t (car s) m badl bad2 q)
(ss-induct ’list (cdr s) m badl bad2 q))
t)
(if (or (member s (i m))
(lessp (index s (lo m)) q))

(it (and (not (member s bad2))
(distinct-symbols bad2)
(member s (signals m))
(subsetp bad2 (signals m)))
(ss-induct ’1list (find-1i s m) m (cons s badl) (cons s bad2) q)
t)))
((ord-lessp (lex (list (difference (length (signals m)) (length bad2))
(count 8))))))

(defn sublistp (1 m)
(it (listp 1)
(if (listp m)
(it (equal (car 1) (car m)}
(sublistp (cdr 1) (cdr m))

84

(sublistp 1 (cdr m)))
1)
t))

(prove-lemma distinct-symbols-sublistp (rewrite)
(implies (and (distinct-symbols m)
(sublistp 1 m))
(distinct-symbols 1)))

(prove-lemma sublistp-subsetp (rewrite)
(implies (and (sublistp 1 m)

(subsetp m p))
(subsetp 1 p)}))

(prove-lemma sublistp-member (rewrite)
(implies (and (sublistp 1 m)

(member x 1))
(member x m)))

(disable sublistp-member)

(prove-lemma slevel$$-sublistp ()
(implies (and (slevel$$ flag s m bad? q)
(sublistp badl bad2))
(equal (slevel$$ flag s m badl q)
(slevel$$ flag s m bad2 g)))
((induct (ss-induct flag s m badl bad?2 qQ)
(enable sublistp-member)))

(prove-lemma slevel$$-nil (rewvrite)
(implies (slevel$$ flag s m (list b))]
(equal (slevel$$ flag s m (list b) q)
(slevel$$ flag s m () q)))
((use (slevel$$-sublistp (badl ()) (bad2 (list b))))))

(prove-lemma slevel$$-list-find-1i (revrite)
(implies (and (sdepth m q)
(member s (signals m))
(not (member s (i m)))
(not (lessp (index s (lo m)) q)))
(slevel$$ ’list (lookupl s (lo m) (1i m)) m (list s) q))
((use (member-slevel$$ (1 (signals m)) (bad ())))
(disable member-slevel$s)))

(prove-lemma slevel$$-list-find-li-nil (reurite)
(implies (and (sdepth m q)

(member s (signals m))

(not (member s (i m)))

(not (lessp (index s (lo m)) q)))
(slevel$$ ’'list (lookupl s (lo m) (1i m)} m () q))
((use (slevel$$-list-find-1i))))

(prove-lemma lessp-slevel$$-find-1i (revrite)
(implies (and (sdepth m q)
(not (equal flag ’list))
(member s (signals m))
(not (member s (i m)))
(not (lessp (index s (lo m)) g)))
(equal (lessp (slevel$$ 'list (lookupl s (lo m) (1i m)) m (OIN"))

85

dutm il

14

(slevel$$ flag s m () q))
t))
((expand (slevel$$ flag s m () q))))

(defn slevel$ (flag s m q)
(if (sdepth m q)
(it (equal flag 'list)
(if (subsetp s (signals m))
(it (listp 3)
(max (slevel$ t (car s) m q)
(slevel$ 'list (cdr s) m q))
0)
1)
(it (member s (signals m))
(it (or (member s (i m))
(lessp (index s (lo m)) q))

(addl (slevel$ ’'list (find-1i s m) m q)))
)
1)
(Cord-lessp (lex (list (slevel$$ flag s m () q) (count 5)))}))

(prove-lemma leq-slevel$-cdr (rewrite)
(implies (and (sdepth m q) (listp s) (subsetp s (signals m)))
(equal (lessp (slevel$ ’list s m q)
(slevel$ ’list (cdr s) m q))
9

(prove-lemma leq-slevel$-car (rewrite)
(implies (and (sdepth m q) (listp s) (subsetp s (signals m}))
(equal (lessp (slevel$ 'list s m q)
(slevel$ t (car s) m q))
1))

(prove-lemma lessp-slevel$-find-1i (rewrite)
(implies (and (sdepth m q)
(not (equal flag ’list))
(member s (signals m))
(not (member s (i m)))
(not (lessp (index s (lo m)) q)))
(equal (lessp (slevel$ 'list (lookupl s (lo m) (1i m)) m q)
(slevel$ flag s m q))
tH)

(prove-lemma combp-sdepth (revrite)
(implies (and (structp m) (combp m))
(sdepth m 0)))
(prove-lemma lessp-count-lookup (rewrite)
(implies (lessp (count s) (count m))
(equal (lessp (count (lookupl x y 8)) (count m))
v
; ;CVECP determines whether V is a valid input vector for M:

(defn cvecp (v m)
(bvpn v (ni m)))

;:Each signal of a combinational module is naturally associated

86

;iwith a certain Boolean function of the inputs. This function
;;is computed as follows:

(defn cv$ (flag s v m)
(it (equal flag 'list)
(if (and (combp m) (structp m) (subsetp s (signals m)))
(it Qlistp s)
(cons (cv$ t (car s) v m)
(cv$ ’list (cdr s8) v m))
0D
1)
(it (behavp m)
(eval (lookup s (o m) (r m)) (pairlist (i m) v))
(if (and (combp m) (member s (signals m)))
(if (and (structp m) (member s (signals m)))
(it (member s (i m))
(lookup s (i m) v)
(cv$ ¢
(find-o s m)
(cv$ ’list (find-1i s m) v m)
(find-s s m)))
1)
)
((ord-lessp (lex (list (count m) (slevel$ flag s m 0) (count 5))))))

(defn cv (s v m)
(cv$ t s v m))

i;Each signal S of a combinational module M is associated with
;i3 maximum and a minimum delay, which represent the range of total
i idelays along all paths connecting the inputs of M to §:

(defn dcmin$ (flag s m)
(it (equal flag ’list)
(it (and (combp m) (structp m) (subsetp s (signals m)))
(it (listp s)
(emin (dcmin$ t (car s) m)
(demin$ 'list (cdr s) m))
N
1)
(i? (behavp m)
(lookup s (o m) (d m))
(if (and (combp m) (member s (signala m)))
(if (and (structp m) (member s (signals m)))
(it (member s (i m))
0
(eplus (dcmin$ t (find-o s m) (find-s s m))
(dcmin$ ’list (find-1i s m) m)))
1)
)
((ord-lessp (lex (list (count m) (slevel$ flag s m 0) (count 8))))))

(defn demin (s m) (dcmin$ t s m))

(defn dcmax$ (flag s m)
(it (equal flag ’list)
(if (and (combp m) (structp m) (subsetp s (signals m)))
(if (listp s)
(emax (dcmax$ t (car s) m)

87

(dcmax$ 'list (cdr s) m))
0)
1)
(if (behavp m)
(lookup s (o m) (4 m))
(if (and (combp m) (member s (signals m)))
(if (and (structp m) (member s (signals m)))
(if (member s (i m))
0
(eplus (dcmax$ t (find-o s m) (find-s 5 m))
(dcmax$ ’list (find-1i s m) m)))
1)
D)
((ord-lessp (lex (list (count m) (slevel$ flag s m 0) (count 3))))))

(defn dcmax (s m) (dcmax$ t s m))

R T L L Lt l et A bbbt bbbt
HY SEQUENTIAL MODULES

HN Parrirarprrarprgngpappae et T T T T TPI PSRRI PR B RS S S0 SRR AL DS S 2 A2 A AL b LA bl dd bt

::We shall define a class of synchronmous sequential circuits, using the
;iflip-flop DFF as the primitive state-holding device. The recursive
;;dafinition will require that for some Q > O, the first Q submodules
;;0f a sequential module M (other than DFF) are sequential and the rest
;;are all combinational. For any module M, ve define the parameter
;:(Q M) as follous:

(defn q$ (mods)
(it (listp mods)
(if (combp (car mods))

0
(addl (q$ (cdr mods))))

o»
(detn q (m)
(q$ (s m)))

(prove-lemma leq-q$ ()
(leq (g$ s) (length s)))

(prove-lemma lessp-count-firstn ()
(implies (and (plistp 1) (leq q (lemgth 1)))
(leq (count (firstn q 1)) (count 1)))
((induct (firstn q 1))))

(prove-lemma lessp-count-first-q (rewrite)
(implies (and (modulep m) (structp m))
(equal (lessp (count (firstn (g$ (s m)) (s m)))
(count m))
t))
((use (lessp-count-firstn (q (q m)} (1 (s m)))
{lessp-count-submodules)
(leq-q$ (s (s m))))
(disable lessp-count-submodules)))

;;A path is "combinatiomal" if it passes through only combinational
;; components. A signal is "native" if it is mot connected to any

88

;iglobal input by a combination path:

(defn nativep$ (flag s m)
(it (sdepth m (q m))
(it (equal flag ’list)
(if (subsetp s (signals m))
(it (listp s)
(and (nativep$ t (car s) m)
(nativep$ ’list (cdr s) m))
t)
1)
(it (equal m (dff))
(member s (o m))
(if (member s (signals m))
(if (member s (i m))
f
(it (lessp (index s (1o m)) (q m))
t

(nativep$ ’list (find-1i s m) m)))
£)))
f)
((ord-lessp (lex (list (slevel$ flag s m (q m)) (count 8))))))

(defn nativep (s m) (nativep$ t s m))

(defn check-seq-1i (clk rst 1i)
(it (listp 1i)
(and (equal clk (caar 1i))
(equal rst (cadar 1i))
(not (member clk (cddar 1i)))
(not (member rst (cddar 1i)))
(check-seq-1i clk rst (cdr 1i)))
t))

(defn check-comb-1i (clk rst 1i)
(it (listp 1i)
(and (not (member clk (car 1i)))
(not (member rst (car 1i)))
(check-comb-1i clk rst (cdr 1i)))
t))

;A sequential module other than DFF has Q sequential submodules, § > 0,

;ivith the rest combinational. It has at least two inputs. The first

i;and secong inputs are by convention the clock and the reset. The clock
ji(resp., reset) is comnected the the clock (resp., reset) input of each
iisequential submodule, and not to any other submodule input. No combinational
iiloops are permitted. Finally, all outputs are required to be native signals:

(defn seqp$ (flag m)
(if (equal flag ’list)
(it (listp m)
(and (seqp$ t (car m))
(seqp$ 'list (cdr m)))
t)
(it (and (modulep m) (structp m))
(or (equal m (dff))
(and (geq (ni m) 2)
(not (zerop (q m)))
(seqp$ 'list (firstn (q m) (s m)))

89

(check-seq-1i (car (i m)) (cadr (i m)) (firstn (q m) (1i m)))
(check-comb-1i (car (i m)) (cadr (i m)) (edrn (q m) (1i m)))
(sdepth m (q m))
(pativep$ ’list (o m) m)))
)
((lessp (count m))))

(defn seqp (m) (seqp$ t m))

(prove-lemma lessp-count-car-s (rewrite)
(implies (structp m)
(equal (lessp (count (car (s m))) (count m))
t))
({use (lessp-count-submodules))
(disable lessp-count-submodules)))

(prove-lemma modulep-seqp (rewrite)
(implies (seqp m)
(modulep$ t m)))

(prove-lemma seqp-sdepth (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(sdepth m (q$ (s m))}))
((disable sdepth dff q$)))

(prove-lemma seqp-structp (rewrite)
(implies (seqp m) (equal (type m) ’struct)))

;;A native signal S of M is "registered” if either (a) M = DFF and 5 is an
;ioutput of M, or (b) M <> DFF and S is associated vith a registered output
;;0f a sequential submodule of M:

(defn regp (s m)
(it (seqp m)
(it (equal m (dff))
(member s (o m))
(and (lessp (index s (lo m)) (q m))
(regp (find-o s m) (find-s s m))))
1))

;A "state" of a sequential module is a srtructure that associates a
;;Boolean value with each flip-flop:

(defn statep$ (flag state m)
(if (equal flag 'list)
(if (listp m)
(and (statep$ t (car state) (car m))
(statep$ ’list (cdr state) (cdr m)))
(equal state ()))
(if (and (modulep m) (structp m))
(if (equal m (dff))
(boolp state)
(if (equal (q m) 1)
(statep$ t state (car (s m)))
(statep$ ’list state (firstn (q m) (s m)))))
D)

(defn statep (state m)
(statep$ t state m))

90

(defn find-state (s state m)
(it (equal (q m) 1)
state
(lookupl s (1o m) state)))

(disable sdepth)
iiA state determines a "resultant value" for each native signal:

(defn rv$ (flag s state m)
(if (seqp m)
(it (equal flag ’list)
(if (and (subsetp s (signals m)) (not (equal m (d££))))
(if (listp s)
(cons (rv$ t (car s) state m)
(rv$ 'list (cdr s) atate m))
(0D
)
(if (member s (signals m))
(if (member s (i m))
bq
(i? (equal m (dff))
(if (equal s 'q) state (not state))
(if (lessp (index s (lo m)) {q m))
(rv$ t (find-o s m) (find-state s state m) (find-s s m))
(cv (find-o s m) (rv$ ’list (find-1i s m) state m) (find-s s m)))))
1)
t)
((ord-lessp (lex (list (count m) (slevel$ flag s m (q m)) (count s))))))

(defn rv (s state m) (rv$ t s state m))
i:A "data vector" associates a Boolean value with each data input:

(defn svecp (x m)
(bvpn x (difference (ni m) 2)))

;A state and a data vector determine a "sequential value" for each signal
;i (other than the clock and reset inputs):

(defn sv$ (flag s v state m)
(it (seqp m)
(it (equal flag ’list)
(it (and (subsetp s (signals m)) (not (equal m (dff))))
(if (listp s)
(cons (sv$ t (car s) v state m)
(sv$ 'list (cdr s) v state m))
O)
1)
(if (member s (signals m))
(it (member s (i m))
(lookup & (cddr (i m)) v)
(it (or (equal m (dft))
(lessp (index s (lo m)) (q m)))
(rv s state m)
(cv (find-o s m) (sv$ ’1list (find-1i s m) v state m) (find-s s m))))
1))
1)

91

((ord-lessp (lex (list (slevel$ flag s m {q m)) (count s))))))

(defn sv (s v state m)
(sv$ t s v state m))

(defn svl (li v state m)
(sv$ 'list (cddr 1i) v state m))

(defn svil (s v state m)
(if (listp s)
(cons (svl (car s) v state m)
(svll (cdr s) v state m))
0»

; ;NEXT computes a new state from a state and a data vector:

(defn next$ (flag v state m)
(if (equal flag ’list)
(it (listp m)
(cons (next$ t (car v) (car state) (car m))
(next$ ’list (cdr v) (cdr state) (cdr m)))
10}
(it (seqp m)
(if (equal m (dff))
(car v)
(if (equal {(qm) 1)
(next$ t (svl (car (li m)) v state m) state (car (s m)))
(next$ 'list
(svll (firstn (q m) (li m)) v state m)
state
(firstn (q m) (s m)))))
0N

(defn next (v state m)
(next$ t v state m))

; ;Each native signal is associated with a minimum and a
;;maximum delay, which determine an interval during vhich the
;;8ignal’s value may change following a rising edge:

(defn dsmin$ (flag s m)
(if (seqp m)
(if (equal flag ’list)
(if (and (subsetp s (signals m)) (not (equal m (dff))))
(it (listp s)
(emin (dsmin$ t (car s) m)
(dsmin$ 'list (cdr s) m))
1)
1
(if (member s (signals m))
(if (member s (i m))
0
(if (equal m (dff))
4000
(it (lessp (index s (lo m)) (q m))
(dsein$ t (find-o s m) (find-s s m))
(eplus (dcmin (find-o s m) (find-s s m))
(dsmin$ ’list (find-1i s m) m)))))
1)

92

)
((ord-lessp (lex (list (count m) (slevel$ flag s m (q m)) (count 5))))))

(detn dsmin (s m) (dsmin$ t s m))

(defn dsmax$ (flag s m)
(it (seqp m)
(if (equal flag 'list)
(if (and (subsetp s (signals m)) (not (equal m (df1£))))
(it (listp s)
(emax (dsmax$ t (car s) m)
(dsmax$ 'list (cdr s) m))
0)
1)
(if (member s (signals m))
(if (member s (i m))
0
(it (equal m (df?))
6000
(it (lessp (index s (1o m)) (q m))
(dsmax$ t (find-o s m) (find-s a m))
(eplus (dcmax (find-o s m) (find-s s m))
(dsmax$ ’list (find-1i s m) m)))))
1))
9]
((ord~lessp (lex (list (count m) (slevel$ flag s m (q m)) (count s))))))

(defn dsmax (s m) (dsmax$ t s m))
; iThe definition of "setup” times requires some work:

(defn setup-comb (sigs setups m)
(it (listp sigs)
(it (zerop (car setups))
(setup-comb (cdr aigs) (cdr setups) m)
(emax (eplus (dcmax (car sigs) m) (car setups))
(setup-comb (cdr sigs) (cdr setups) m)))
0))

(defn collect-i (s 1i i)
(if (listp 1i)
(if (equal s (car 1i))
(cons (car i) (collect-i s (cdr 1i) (cdr i)))
(collect-i s (cdr 1i) (edr i)))
0N

(defn collect-1i (s 1i m)

(it (listp 11)

(if (member s (car 1i))

(cons (collect-i s (car 1i) (i (car m)))
(collect-1i s (cdr 1i) (cdr m)))
(collect-1li s (cdr 1i) (edr m)))

o»n

(defn collect-lo (s 1li lo)
(if (listp 1i)
(it (member s (car 1i))
(cons (car lo) (collect-lo s (cdr 1i) (cdr lo)))
(collect-1lo s (cdr 1i) (cdr lo)))

93

0»

(defn slevel (s m)
(slevel$ t s m (q m)))

(defn smax (m)
(slevel$ ’list (signals m) m (q m)))

(prove-lemma leq-slevel-member ()
(implies (and (subsetp 1 (signals m))
(member s 1))
(leq (slevel$ t s m Q)
(slevel$ 'list 1 m q))))

(prove-lemma subsetp-cdr (rewrite) -
(implies (subsetp 1 (cdr m))
(subsetp 1 m)))

(prove-lemma subsetp-1-1 (rewrite)
(subsetp 1 1))

(prove-lemma leq-slevel-smax ()
(implies (member s (signals m))
(leq (slevel s m) (smax m)))
((use (leq-slevel-member (1 (sigmals m)) (q {q m))))
(disable signals q slevel$)))

(defn m0 (s m)
(addi (difference (smax m) (slevel s m))))

(defn mi (8 m)
(if Qistp 3)
(max (m0 (car s) m)
(m1 (cdr s) m))
0))

(defn m4 (s m)
(if (listp)
(max (mi (car s) m)
(m4 (cdr s) m))
0))

(defn setup-meas (flag s m)
(case flag
(0 (m0 s m))
(1 (@1 s m))
(3 (m1 s m))
(4 (4 s m)
(otherwise £)))

(defn attachedp (x y i 1i lo)
(it (zerop i)
(and (member x (car 1i))
(member y (car lo)))
(attachedp x y (subl i) (cdr 1i) (edr 10))))

(prove-lemma member-union (revrite)

(implies (member x m)
(member x (uniom 1 m))))

94

(prove-lemma attached-unionl ()
(implies (attachedp x y i 1i lo)
(member y (unionl l0))))

(prove-lemma attachedp-member-signals (rewrite)
(implies (attachedp x y i (1i m) (lo m))
(member y (signals m)))
((use (attached-unionl (1i (1i m)) (lo (lo m))))))

(prove-lemma member-unionl-appears (revrite)
(implies (not (appears x 1o))
(not (member x (unionl 10)))))

(prove-lemma none-appear-member-unionl O
(implies (and (none-appear in lo)
(member x (unionl lo0)))
(not (member x in))))

(prove-lemma attachedp-not-member-i (rewrite)

(implies (and (attachedp x y i (1i m) (lo m))
(check-struct m))

(not (member y (i m))))

((use (attached-unionl (1i (1i m}) (lo (lo m)))
(none-appear-member-unionl (in (i m)) (lo (le m)) (x NN

(prove-lemma none-appear-not-attached (rewrite)
(implies (and (member y car)
(none-appear car cdr))
(not (attachedp x y i 1i ecdr)))
((use (attached-unionl (lo cdr))
(none-appear-member-unionl (in car) (lo edr) (x 52020

{prove-lemma attachedp-index ()
(implies (and (attachedp x y i 1li lo)
(all-distinct-symbols lo))
(equal (index y lo) (fix i))))

(prove-lemma attachedp-index-revrite (rewrite)
(implies (and (attachedp x y i (1i m) (lo m))
(check-struct m))
(equal (index y (lo m)) (fix i)))
((use (attachedp-index (1i (1i m)) (lo (lo m))))))

(prove-lemma attachedp-member-lookupl ()
(implies (and (attachedp x y i 1i lo)
(all-distinct-symbols 1o0))
(member x (lookupl y lo 1i))))

(prove-lemma attachedp-member-find-1i (rewrite)
(implies (and (attachedp x y i (1i m) (lo m))
(check-struct m)) :
(member x (find-1i y m)))
((use (attachedp-member-lookupl (1i (1i m)) (lo (lo m))))))

(prove-lemma appears-member-unionl (rewrite)

(implies (appears x 1)
(member x (unionl 1))))

95

(prove-lemma all-appesar-subsetp-unionl (rewrite)
(implies (all-appear 1i 1)
(subsetp 1i (unienl 1))))

(prove-lemma subsetp-lookupl ()
(implies (lists-all-appear 1i 1)
(subsetp (lookupl y lo 1i) (unionl 1))))

(prove-lemma subsetp-find-li (revrite)
(implies (check-struct m)
(subsetp (find-1i y m) (signals m)))
((use (subsetp-iookupl (1i (1i m)) (lo (lo m)) (1 (coms (i m) (lo m)))))))

(prove-lemma attached-lessp-slevel$ ()
(implies (and (sdepth m q)
(modulep m)
(structp m)
(attachedp x y i (1i m) (lo m))
(leq q i)) :
(lessp (slevel$ t x m Q)
(slevel$ t y m q)))
((disable sdepth find-1i signals index slevel$ check-struct attachedp)
(use (leg-slevel-member (1 (find-1i y m)) (s x))
(slevel$ (flag t) (s y)))
(expand (modulep$ t m))))

(prove-lemma lessp-m0 ()
(implies (and (seqp m)
(not (equal m (dff)))
(attachedp x y i (1i m) (lo m))
(leq (q m) i))
(lessp (m0 y m) (m0 x m)))
((use (attached-lessp-slevel$ (q (q m)))
(leq-slevel-smax (s y)))
(disable modulep attachedp slevel$ sdepth smax q signals dff =1+dff)))

(prove-lemma not-zerop-md ()
(not (zerop (m0 x m))))

(disable m0)

(prove-lemma attachedp-ait ()

(implies (and (member x (car (cdrm i 1i)))
(member y (car (cdrn i 1lo))))

(attachedp x y i 1i 10)))

(prove-lemma lessp-m0-rewrite (rewrite)

(implies (and (seqp m)
(not (equal m (dff)))
(leq (g m) 1)
(member x (car (cdrn i (11 m))))
(member y (car (cdrn i (lo m)))))

(equal (lessp (m0 y m) (m0 x m)) t))

((use (lessp-m0)
(attachedp-alt (1i (1i m)) (lo (lo m))))

(disable attachedp dff »1sdff seqp member q)))

(prove-lemma lessp-mi ()
(implies (and (seqp m)

96

(not (equal m (dff)))

(leq (q m) i)

(member x (car (cdrm i (1i m))))

(subsetp ys (car (cdrn i (1o m)))))
(equal (lessp (m1 ys m) (m0 x m)) t))

((disable attachedp dff siedff seqp member q)

(INDUCT (LENGTH YS))
(use (not-zerop-m0))))

(prove-lemma lessp-mi-m0 (revrite)
(implies (and (seqp m)
(not (equal m (dff)))
(leq (q m) i)
(member x (car (cdrn i (1i m)))))
(equal (lessp (mt (car (cdrn i (lo m))) m)
(@0 x m))
12))]
((disable attachedp dff sixdff seqp member q)
(use (lessp-ml (ys (car (cdrn i (lo m))))))))

(prove-lemma cdr-cdrn (revrite)
(equal (cdr (cdrn r 1)) (edrn (add! r) 1)))

(defn lm4-induct (r m)
(if (lessp r (length (1i m)))
(1m4-induct (addi r) m)
t)
((lessp (difference (length (1i m)) r))))

(prove-lemma nlistp-cdrn (revrite)
(implies (leq (lemgth 1) n)
(not (listp (cdrn n 1)))))

(prove-lemma lessp-mé ()
(implies (and (seqp m)
(not (equal m (dff)))
(leq (q m) 1)
(leq r (length (1i m))))
(equal (lessp (m¢ (collect-lo s (cdrm r (1i m)) (edrm r (lo m))) m)
(m0 8 m))
t))
((disable dff «1#dff seqp q cdrn m1)
(induct (lm4-induct r m))
(use (not-zerop-m0 (x s)))))

(prove-lemma equal-length-li-s ()
(implies (seqp m)
(equal (length (1i m)) (length (s m))))
((expand (seqp$ t m) (modulep$ t m))))

(prove-lemma lessp-mi-revrite (rewrite)
(implies (and (seqp m)
(not (equal m (df?))))
(equal (lessp (m4 (collect-lo s (cdrn (q$ (s m)) (1i m)) (cdrn (q8 (s m)) (lo m))) m)
(m0 s m))
t)
((disable dff s1vdff seqp q$ cdrn ml md collect-lo)
(use (lessp-m4 (r (q m)))
(leq-q$ (s (s m)))

97

(equal-length-1i-s))))

(prove-lemma leq-count-collect-lo (3
(implies (and (equal (length 1i) (length s))
(plistp s))
{leq (count (collect-lo x li s8)) (count 8)))
((induct (collect-lo x 1i 8))))

(prove-lemma leq-count-cdrn ()
(implies (plistp s)
(leq (count (cdrn q 3)) (count s))))

(prove-lemma equal-length-cdrn (rewrite)
(implies (equal (length x) (length y))
(equal (equal (length (cdrm q x)) (length (cdrn q ¥)))
A3D))

(prove-lemma plistp-cdrn ()
(implies (and (leq q (length s)) (plistp &))
(plistp (cdrn q 8))))

(prove-lemma plistp-cdrn-q (rewvrite)
(implies (plistp s)
(plistp (cdrn (q$ s) s)))
((use (plistp-cdrn (q {(q$ 8)))
(leq-q$))))

(prove-lemma lessp-count-collect-lo (revrite)
(implies {and (seqp m) (not (equal m (dff))))
(equal (lessp (count (collect-lo x
(cdrn {(q$ (s m)) (i m))
(cdrn (q$ (s m)) (s m))))
(count m))
t))
{{use (leq-count-collect-lo (li (cdrn (q m) (1i m))) (s (cdrn (q m) (s m))))
(leq-count-cdrn (s (s m)) (q (q m}})
(equal-length-1li-s)
(lessp-count-submodules))
(disable modulep$ dff =1+dff lessp-count-submodules)}))

(prove-lemma length-firstn (rewrite)
(equal (length (firstn q x)) (fix q)))

(prove-lemma plistp-firstn (rewrite)
(plistp (firstn q 1)))

(prove-lemma lessp-count-collect-lo-firstn (rewrite)
(implies (and {seqp m) (nmot (equal m (dff))))
(equal (lessp (count (collect-lo x
(tirstn (q8 (8 m)) (1i m))
(firstn (q$ (s m)) (s m))))
(count m))
t))
((use (lessp-count-first-q)
(equal-length-1i-s)
(leq-count-collect-lo (1i (firstn (q m) (1i @))) (s (firstn (q m) (s m)))))
(disable lessp-count-first-q dff *1*dff modulep$)))

98

(prove-lemma leq-m0 (rewrite)
(implies (listp x)
(equal (lessp (m1 x m) (0 (car x) m)) £)))

(prove-lemma leq-cdr-mi (revrite)
(implies (listp x)
(equal (lessp (m1 x m) (m1 (cdr x) m)) £)))

(prove-lemma leq-ml (rewrite)
(implies (listp x)
(equal (lessp (4 x m) (ml (car x) m)) £)))

(prove-lemma leq-cdr-mé (rewrite)
(implies (listp x)
(equal (lessp (md x m) (md (cdr x) m)) £)))

iiEach input other than the clock is associated vith a "setup time”,
iivhich represents the duration over which the signal is required to
i:hold constant prior to a rising edge:

(disable seqp)
(disable dff)
(disable *1»dff)

(defn setup$ (flag x m)
(case flag
(0 (if (seqp m)
(it (equal m (dff))
(case x
(rat 8000)
(d 6000)
(othervise f))
(emax (setup$ 2
(collect-1i x (firstn (q m) (1i m)) (firstn (qm (s m)))
(collect-lo x (firstn (q m) (1i m)) (firstn (g m) (s m))))
(setup$ §
(setup$ 4
(collect-lo x (cdrn (q m) (1i m)) (cdrn (q m) (lo m)))
m)
(collect-lo x (cdrn (q m) (1i m)) (cdrm (q m) (s m))))))
1))
(1 (if Qlistp x)
(emax (setup$ 0 (car x) m)
(setup$ 1 (cdr x) m))
o
(2 (it (listp m)
(emax (setup$ 1 (car x) (car m))
(setup$ 2 (cdr x) (cdr m)))
0))
(3 (if (listp x)
(cons (setup$ 0 (car x) m)
(setup$ 3 (cdr x) m))
0»
(4 (if (listp x)
(cons (setup$ 3 (car x) m)
(setup$ 4 (cdr x) m))
0N
(S (if (listp m)
(emax (setup-comb (o (car m)) (car x) (car m))

99

(setup$ 5 (cdr x) (cdr m)))
0))
(othervise £))
((ord-lessp (lex (list (count m) (setup-meas flag x m) (count x))}))))

(enable seqp)
(enable dtf)
(enable =*1sdff)

(defn setup (s m)
(setup$ 0 s m))

;;Finally, we define three parameters pertaining to the behavior of the
i;clock input, called the "clock high", the "clock lovw",

;;and the "minimum pericd". These represent the minimum

;:durations between a rising edge and the next falling edge, a falling
;;edge and the next rising edge, and successive rising edges,
;;respectively:

(defn high$ (flag m)
(it (equal flag ’list)
(if (listp m)
(max (high$ t (car m))
(high$ ’list (cdr m)))
0
(it (seqp m)
(if (equal m (dff))
4000
(high$ ’list (firstn (q m) (s m))))
1))

(defn high (m)
(high$ t m))

(defn low$ (flag m)
(if (equal flag ’list)
(if (listp m)
(max (low$ t (car m))
(low$ ’'list (cdr m)))
0)
(it (seqp m)
(if (equal m (dff))
6000
(low$ ’list (firstn (q m) (s m))))
)

(defn low (m)
(low$ t m))

(defn setups-plus-delays (setups outs sub)
(it (listp outs)
(max (plus (dsmax (car ocuts) sub)
(car setups))
(setups-plus-delays (cdr setups) (cdr outs) sub))
0))

(defa p3 (s lo m)

(if (listp)
(max (setups-plus~delays (setup$ 3 (car lo) m) (o (car s)) (car 8))

100

(p3 (cdr 8) (cdr lo) m))
0))

(defn per$ (flag m)
(if (equal flag °’list)
(if (listp m)
(max (per$ t (car m))
(per$ ’'list (cdr m)))

0)
(it (seqp m)
(if (equal m (dff))
10000

(max (per$ ‘list (firstn (q m) (s m)))
(max (setup$ 3 (cdr (i m)) m)
(p3 (firstn (q m) (s m)) (firsta (q m) (lo m)) w))))
1))

(defn per (m) (per$ t m))

(disable seqp-structp)

:;‘tttt't#ttt“tttlittttt‘tt‘t‘tttt*‘i."‘it‘t“‘tltiiti“““**i..i‘it*#

HH COMPUTATIONS ON COMBINATIONAL MODULES

;;titt.tii"ii‘itltt#tl-tt‘ttttii"t“tt‘*“ttti‘i““*‘t‘iiﬁ‘i“‘ii‘ti‘i

; iWhenever a combinational module is introduced, we derive all its of
iirelevant properties and then disable its definition. This procedure
;:is automated by means of several macros, which we define in this section.

;iFirst, for the sake of efficiency, ve derive some revrite Tules that allow
;sus to disable various definitions:

(prove-lemma bvpn-rewrite-1 (rewrite)
(implies (not (zerop n))
(equal (bvpn x n)
(and (boolp (car x))
(bvpn (cdr x) (subl n))))))

(prove-lemma bvpn-rewrite-2 (rewrite)
(implies (zerop n)
(equal (bvpn x n)
(equal x ()))))

(disable bvpn)

(prove-lemma combp-rewrite-i (rewrite)
(implies (listp m)
(equal (combp$ 'list m)
(and (combp (car m))
(combp$ ’list (cdr m))))))

(prove-lemma combp-rewrite-2 (rawrite)
(implies (nlistp m)
(combp$ ’list m)))

(prove-lemma combp-revrite-3 (revrite)
(implies (and (modulep m) (structp m))

101

(equal (combp$ t m)
(and (sdepth m 0) (combp$ ’list (s m))))))

(prove-lemma combp-modulep (revrite)
(implies (combp m) (modulep m)))

(disable combp)
(disable combp$)

(prove-lemma match-inputs-rewrite-i1 (rewrite)
(implies (listp subs)
(equal (match-inputs subins subs)
(and (listp subins)
(equal (length (car subins)) (ni (car sube)))
(match-inputs (cdr subins) (cdr subs))))))

(prove-lemma match-inputs-rewrite-2 (rewrite)
(implies (nlistp subs)
(match-inputs subins subs)))

(prove-lemma match-outputs-rewrite-1 (revrite)
(implies (listp subs)
(equal (match-outputs subouts subs)
(and (equal (length (car subouts)) (no (car subs)))
(match-outputs (cdr subouts) (cdr subs))))))

(prove-lemma match-outputs-rewrite-2 (reurite)
(implies (nlistp subs)
(match-outputs subouts subs)))

(disable match-inputs)
(disable match-outputs)

(prove-lemma modulep$-rewrite-1 (rewrite)
(implies (structp m)
(equal (modulep$ t m)

(and (equal (length (1i m)) (length (s m)))
(match-inputs (1i m) (s m))
(equal (length (lo m)) (length (s m)))
(match-outputs (lo m) (s m))
(all-appear (o m) (lo m))
(lists-all-appear (1i m) (coms (i m) (lo m)))
(all-distinct-symbols (cons (i m) (lo m)))
(modulep$ ’list (s m))))))

(prove-lemma modulep$-revrite-2 (rewrite)
(implies (listp m)
(equal (modulep$ 'list m)
(and (modulep (car m))
(modulep$ ’list (cdr m))))))

(prove-lemma modulep$-rewrite-3 (rewrite)
(modulep$ 'list ()))

(disable modulep)

(disable modulep$)

102

(prove-lemma slevel$$-revrite-1 (rewrite)
(implies (listp out)
(equal (slevel$$ ’'list out m bad q)
{emax (slevel$$ t (car out) m bad q)
(slevel$$ ’'list (cdr out) m bad q)))))

(prove-lemma slevel$$-rewrite-2 (rewrite)
(implies (nlistp out)
(equal (slevel$$ ’list out m bad q) 0)))

(prove-lemma slevel$$-rewrite-3 (rewrite)
(implies (or (member out (i m))
(lessp (index out (lo m)) qQ)
(equal (slevel$$.t out m bad q) 0)))

(prove-lemma slevel$$-revrite-4 (ravrite)
(implies (and (not (member out (i m)))
(not (lessp (index out (lo m)) q))
(not (member out bad))
(distinct-symbols bad)
(member out (signals m))
(subsetp bad (signals m)))
(equal (slevel$$ t out m bad q)
(eaddl (slevel$$ ’list (find-1i out m) m (coms out bad) ¢)))))

(disable slevel$s)

(prove-lemma cv$-rewrite-1 (rewrite)
(implies (and (combp m) (structp m) (subsetp s (signals m)) (listp s))
(equal (cv$ 'liat s v m)
(cons (cv (car 8) v m)

(cv$ 'list (cdr 8) v m)))))

(prove-lemma cv$-rewrite-2 (rewrite)
(implies (and (combp m) (structp m) (nlistp s))
(equal (cv$ ‘list s v m) ())))

(prove-lemma cv$-rewrite-3 (revrite)

(implies (and (combp m) (structp m) (member s (signals m)))

(equal (cv$ ¢t s v m) .

(it (member s (i m))

(lockup 8 (i m) v)
(cv (find-o0 s m)

(cv$ 'list (find-1i s m) v m)
(find-s s m))))))

(prove-lemma cv$-revrite-4 (rewrite)
(implies (behavp m)
(equal (cv$ t s v m)
(eval (lookup s (o w) (r m)) (pairlist (i m) v)))))

(prove-lemma cv-rewrite (rewrite)
(equal (cv s v m) (cv$ t & v m)))

(disable cv)

(disable cv$)

103

Voo

(prove-lemma dcmin$-revrite-1 (rewrite)
(implies (and- (combp m) (structp m) (subsetp s (signals m)) (listp s))
(equal (dcmin$ ‘list s m)
(emin (dcmin (car s) m)
(dcmin$ 'list (cdr s) m)))))

(prove-lemma dcmin$-revwrite-2 (revrite)
(implies (and (combp m) (structp m) (nlistp s8))
(equal (dcmin$ 'list s m) £)))

(prove-lemma dcmin$-rewrite-3 (revrite)
(implies (and (combp m) (structp m) (member s (signals m)))
(equal (demin$ t s m)
(if (member s (i m))
0
(eplus (dcmin (find-o s m) (find-s & m))
(dcmin$ ’list (find-1i s @) m))))))

(prove-lemma dcmin$-revrite-4 (rewrite)
(implies (behavp m)
(equal (dcmin$ t s m)
(lookup s (o m) (d m)))}))

(prove-lemma dcmin-rewrite (rewrite)
(equal (demin 8 m) (demin$ ¢ s m)))

(disable dcmin$)
(disable demin)

(prove-lemma dcmax$-rewrite-1 (rewrite)
(implies (and (combp m) (structp m) (subsetp s (signals m)) (listp s))
(equal (dcmax$ ’list s m)
(emax (demax (car s) m)
(dcmax$ ’list (cdr s) m)))))

(prove-lemma dcmax$-rewrite-2 (rewrite)
(implies (and (combp m) (structp m) (nlistp 8))
(equal (dcmax$ ’list s m) 0)))

(prove-lemma dcmax$-rewrite-3 (rewrite)
(implies (and (combp m) (structp m) (member s (signals m)))
(equal (dcmax$ t s m)
(if (member s (i m))
0
(eplus (dcmax (find-o s m) (find-s s m))
_ (dcmax$ 'list (find-1i s m) m))))))

(prove-lemma dcmax$-rewrite-4 (rewrite)
(implies (behavp m)
(equal (dcmax$ t s m)
(lookup 5 (o m) *(d m)))))

(prove-lemma dcmax-revrite (rewrite)
(equal (dcmax s m) (dcmax$ t 5 m)))

(disable dcmax$)

(disable dcmax)

104

(prove-lemma lookup-rewrite (rewrite)
(implies (listp i)
(equal (lookup s i v)
(if (equal s (car i))
(car v)
(lookup s (edr i) (cdr v))))))

(disable lookup)

(prove-lemma lookupl-rewrite (rewrite)
(implies (listp i)
(equal (lookupl s i v)
(if (member s (car 1))
(car v) .
(lookupl 8 (cdr i) (cdr v))))))

(disable lookupl)

;iFor each gate, ve establish its components, prove that it is a
i;combinational module, derive its basic parameters, and then disable its
;;definition:

(defmacro print-and-prove (krest args)
‘(and (print ’(prove-lemma ,0args))
(prove-lemma ,Qargs)))

(defun hyphen (x y)
(intern (format () "~A-"A" x 20}

(defun ex (m)
(intern (format () "#1s“A" m)))

(defmacro dogate (m i o r d cv)
‘(and (print-and-prove ,(hyphen m 'type) (rewrite)
(equal (type (,m)) ’behav)
((enable type)))
(print-and-prove ,(hyphen m ’i) (rewrite)
(equal (i (,m)) ’,i)
((enable i)))
(print-and-prove ,(hyphen m 'o) (rewrite)
(equal (o (,m)) ’(,0))
((enable 0)))
(print-and-prove ,(hyphen m ’r) (rewrits)
(equal (r (,m)) ’(,r))
((enable r))) .
(print-and-prove ,(hyphen m ’'d) (rewrite)
(equal (d (,m)) ’(,d))
((enable d)))
(print-and-prove ,(hyphen m ’'p) (revrite)
(equal (p (,m)) ’(inert))
((enable p)))
(print-and-prove ,(hyphen m 'modulep) (rewrite)
(modulep (,m)))
(print-and-prove ,(hyphen m ’combp) (rewrite)
(combp (,m)))
(print-and-prove ,(hyphen m ’cv) (rewrite)
(equal (c¢cv ’,0 v (,m))

105

,ev))
(print-and-prove ,(hyphen m ’dmin) (rewrite)
(equal (demin ’,0 (,m)) ,d))
(print-and-prove ,(hyphen m ‘dmax) (revrite)
(equal (dcmax *,0 (,m)) ,d))
(disable ,m)
(disable ,(ex m))))

(dogate t0 () t (t0) 2000 t)
(dogate fO () £ (£0) 2000 f)

(dogate notl (a) b (notl a) 2000
{not (car v)))

(dogate and2 (a b) c (and2 a b) 2000
(and (car v) (cadr v)))

(dogate or2 (a b) c (or2 a b) 2000
(or (car v) (cadr v)))

(dogate nand2 (a b) ¢ (nand2 a b) 2000
(not (and (car v) (cadr v))))

(dogate fnand2 (a b) ¢ (nand2 a b) 1000
(not (and (car v) (cadr v))))

(dogate nor2 (a b) ¢ (mor2 a b) 2000
(not (or (car v) (cadr v))))

(dogate xor2 (a b) ¢ (xor2 a b) 2000
(not (equal (car v) (cadr v})))

(dogate and3 (a b ¢) d (and3 a b ¢) 2000
(and (car v) (cadr v) (caddr v)))

(dogate or3 (a b ¢) d (or3 a b c) 2000
(or (car v) (cadr v) (caddr v)))

(dogate nand3 (a b ¢) d (nand3 a b ¢) 2000
(not (and (car v) (cadr v) (caddr v))))

(dogate nor3 (a b ¢) d (nor3 a b c) 2000
(not (or (car v) (cadr v) (caddr v)}))

(dogate xor3 (a b ¢) d (xor3 a b c) 2000
(not (equal (car v) (not (equal (cadr v) {(caddr v))))))

(dogate and4 (a b ¢ d) e (andd a b ¢ 4) 2000
(and (car v) (cadr v) (caddr v) (cadddr v)))

(dogate ord4 (a b c d) e (or4 a b ¢ d) 2000
(or (car v) (cadr v) (caddr v) (cadddr v)))

(dogate nand4¢ (a b ¢ d) e (nand4 a b c d) 2000
(not (and (car v) (cadr v) (caddr v) (cadddr v))))

(dogate nor4 (a b ¢ d) e (nor4 a b ¢ d) 2000
(not (or (car v) (cadr v) (caddr v) (cadddr v})))

106

(dogate xor4 (a b c d) e (xord a b ¢ d) 2000
(not (equal (car v) (mot (equal (cadr v) (mot (equal (caddr v) (cadddr v))))))))

(dogate and5 (a b c de) g (and5 a b c d &) 2000
(and (car v) (cadr v) (caddr v) (cadddr v) (caddddr v)))

(dogate orS (abcde) g (or5abedae) 2000
(or (car v) (cadr v) (caddr v) (cadddr v) (caddddr v)))

(dogate nandS (a b c d e) g (nand5 a b ¢ d «) 2000
(not (and (car v) (cadr v) (caddr v) (cadddr v) (caddddr)

(dogate nor5 (a b cde) g (norS5abcde) 2000
(not (or (car v) (cadr v) (caddr v) (cadddr v) (caddddr v))))

(dogate xor5 (a bcde) g (xor5abecde 2000
(not (equal (car v)
(not (equal (cadr v)
(not (equal (caddr v)
(not (equal (cadddr v) (caddddr v))))))))))

;;The same is done for every combinational structure at the time of its
;idefinition. We illustrate with the structure ADDER2:

(prove-lemma type-adder2? (revrite)
(equal (type (adder2)) ’struct)
((enable type)))

(prove-lemma i-adder2 (rewrite)
(equal (i (adder2)) ’'(a b c))
((enable 1i)))

(prove-lemma o-adder2 (rewrite)
(equal (o (adder2)) *(1 h))
((enable 0)))

(prove-lemma s-adder2? (rewrite)
(equal (s (adder2))

(list (nand2) (nand?) (nand2) (nand2) (nand2) (nand2) (nand2) (nand2) (nand2)))
((enable 3)))

(prove-lemma li-adder2 (revrite)
(equal (1li (adder2))
"((a b) (a t1) (b t1) (t2 t3) (c t4) (t5 t4) (c t5) (t5 t1) (7 t6)))
((enable 11)))

(prove-lemma lo-adder2 (rewrite)
(equal (lo (adder2))
1((t1) (£2) (£3) (£4) (25) (t8) (t7) (b) (1))
((enable 10)))

(disable adder2)

(disable =*1sadder2)

(prove-lemma modulep-adder? (rewrite)

(modulep (adder2))
((use (modulep (m (adder2))))))

107

(prove-lemma combp-adder2 (rewrite)
(combp (adder2))
((enable sdepth)
(use (combp (m (adder2))))))

(prove-lemma cv-adder2-1 (rewrite)
(implies (cvecp v (adder2))
(equal (cv ’1 v (adder2))
(not (equal (car v) (mot (equal (cadr v) (caddr v))J)))))

(prove-lemma cv-adder2-h (revrite)
(implies (cvecp v (adder2))
(equal (cv 'h v (adder2))
(if (car v) (or (cadr v) (caddr v)) (and (cadr v) (caddr v))))))

(prove-lemma adder2-dcmin-1 (rewrite)
(equal (dcmin 'l (adder2)) 4000))

(prove-lemna adder2-dcmax-1 (rewrite)
(equal (dcmax 'l (adder2)) 12000))

(prove-lemma adder2-demin-h (rewrite)
(equal (dcmin ’h (adder2)) 4000))

(prove-lemma adder2-dcmax-h (revrite)
(equal (dcmax ’h (adder2)) 10000))

(defun make-s (subs)
(if (consp subs)
(cons (list (caar subs)) (make-s (cdr subs)))
0O»

(defun make-1i (subs)
(if (consp subs)
(cons (cadar subs) (make-li (cdr subs)))
Oo»n

(defun make-lo (subs)
(if (consp subs)
(cons (caddar subs) (make-lo (cdr subs)))
O»n

;;We use the following macro to introduce new combinational structures:

(defmacro defcomb (m i o krest subs)

(let ((s (make-s subs)) (1li (make-1i subs)) (lo (make-lo subs)))
‘(and (defn ,m ()
(1ist 'struct ’,i ’,o (list ,0s) ’,1i ’,10))

(print-and-prove ,(hyphen m ’type) (revrite)
(equal (type (,m)) ’struct)
((enable type)))

(print-and-prove ,(hyphen m ’i) (revrite)
(equal (i (,m)) *,i)
((enable 1i)))

(print-and-prove ,(hyphen m 'e) (rewrite)
(equal (o (,m)) ’,0)
((enable 0)))

108

(print-and-prove ,(hyphen m ’s) (rewrite)
(equal (s (,m)) (list ,0s))
((enable 1)))

(print-and-prove ,(hyphen m ’1i) (revrite)
(equal (1i (,m)) ’,1j)
((enable 1i)))

(print-and-prove ,(hyphen m ’lo) (rewrite)
(equal (lo (,m)) ’,l0)
((enable 10)))

(disable ,m)

(disable ,(ex m))

(print-and-prove ,(hyphen m 'modulep) (revrite)
(modulep (,m))
((use (modulep (m (,m))))))

(print-and-prove , (hyphen m 'combp) (rewrite)
(combp (,m))
((enable sdepth)
(use (combp (m (,m)))))))))

H .“.i*t“tt#t*‘i‘ti‘t“*ii‘.‘itt‘#‘.‘i‘tttt‘ttt‘t‘t“‘.i‘ttii“‘t‘.i“‘

HH COMPUTATIONS ON SEQUENTIAL MODULES
Rt P

iiWe establish a similar procedure for deriveing the relevant properties
;iof a sequential module before disabling its definition.

;iFirst, we derive the basic properties of DFF:

(prove-lemma not-combp-dff (revrite)
(not (combp (dff)))
((enable *i+noti siand2 sisnand2? *1snand3)))

(prove-lemma modulep-dff (revrite)
(modulep (dff))
((enable #1*noti *1sand2? sisnand? *ismand3)))

(prove-lemma type-dff (rewrite)
(equal (type (dff)) ’struct)
((enable type)))

(prove-lemma i-dff (revrite)
(equal (i (dff)) ’(clk rst d))
((enable 1)))

(prove-lemma o-dff (rewrite)
(equal (o (dff)) ’(q qn))
((enable 0)))

(prove-lemma seqp-dff (revrite)
(seqp (dft))
((enable *1#*notl *isand2 *i*nand? *1»nand3)))

(prove-lemma rv-rewrite (revrite)
(equal (rv s state m) (rv$ t a state m)))

(prove-lemma rv-dff-q (rewrite)
(equal (rv ’q state (dff)) state)

109

((enable *i*noti *1»and2? *isnand2 *1*nand3 i lo)))

(prove-lemma rv-dff-qn (reurite)
(equal (rv ’qn state (dff)) (not state))
((snable »i*noti *isand2 *{%nandZ *isnand3 i lo)))}

(prove-lemma next-dff (rewrite)
(equal (next v state (dff)) (car v))
((enable *1smotl +1+and2 *1*nand2 *i*nand3)))

(disable dff)
(disable *1sdff)

;:Next, ve derive some rewite rules that allov us to disable various
;;function definitions:

(defn sc-induct (m)
(if (structp m)
(if (equal m (dff))
t
(sc-induct (car (s m))))
t))

(prove-lemma combp-car-s (rewrite)
(implies (and (structp m)
(combp m)
(listp (s m)))
(combp (car (s m))))
((enable combp combp$)
(expand (combp$ t m))))

(prove-lemma seqp$-car-s (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(seqp$ t (car (s m))))
((expand (seqp$ t m) (firstn (q$ (s m)) (s m)))))

(prove-lemma seq-combp (rewrite)
(implies (seqp m) (mot (combp m)))
((induct (ac-induct m))))

(prove-lemma nativep$-rewrite-1 (rewrite)
(implies (and (sdepth m (q m))
(subsetp s (signals m))
(listp 8))
(equal (nativep$ ’list s m)
(and (nativep$ t (car s) m)
(nativep$ ’list (cdr s) m)))))

(prove-lemma nativep$-revrite-2 (rewrite)
(implies (and (sdepth m (q m))

(nlistp s))
(nativep$ ’list s m)))

(prove-lemma nativep$-revrite-3 (rewrite)
(implies (and (sdepth m (q m))

(not (equal m (dff)))

(member s (signals m))

(not (member s (i m))))

110

(equal (nativep$ t s m)
(if (lessp (index s (lo m)) (q m))
t

(nativep$ ’list (find-1i s m) m)))))
(disable nativep$)

(prove-lemma firstn-rewrite-1 (rewrite)
(implies (not (zerop n))
(equal (firstn n 1)
(cons (car 1) (firstn (subl n) (cdr 1))))))

(prove-lemma firstn-rewrite-2 (rewrite)
(implies (zerop n)
(equal (firsta n.1) ())))

(disable firstnm)

(prove-lemma seqp$-revrite-1 (rewrite)
(implies (listp m)
(equal (seqp$ ’list m)
(and (seqp (car m))
(seqp$ ’list (cdr m))))))

(prove-lemma seqp$-revrite-2 (rewrite)
(implies (nlistp m)
(seqp$ ’list m)))

(prove-lemma seqp$-revrite-3 (rewrite)

(implies (and (modulep m) (structp m) (not (equal m (df£))))

(equal (seqp$ t m)

(and (geq (ni m) 2)
(not (zerop (q m)))
(seqp$ ’list (firstn (q m) (s m)))
(check-seq-1i (car (i m)) (cadr (i m)) (firstn (q m) (1i m}))
(check-comb-1i (car (i m)) (cadr (i m)) (cdrn (q m) (1i m)))
(sdepth m (q m))
(nativep$ ’list (o m) m))))

((expand (seqp$ t m))))

(disable seqp$)
(disable seqp)

(prove-lemma rv$-rewrite-1 (rewrite)
(implies (and (seqp m)

(subsetp s (signals m))

(listp s)

(not (equal m (dff))))
(equal (rv$ ’list s atate m)
(cons (rv (car s) state m)

(rv$ ’list (cdr s) state m)))))

(prove-lemma rv$-rewrite-2 (rewrite)
(implies (and (seqp m)

(nlistp s)

(not (equal m (d£f))))
(equal (rv$ ’list s state m) ())))

111

(prove-lemma rv$-rewrite-3 (rewrite)

(implies (and (seqp m)
(not (equal m (dff)))
(member s (signals m))
(not (member s (i m))))

(equal (rv$ t s state m)

(if (lessp (index 3 (lo m)) (q m))

(rv (find-o s m) (find-state s state m) (find-s s m))
(¢cv (find-o s m) (rv$ ’list (find-1i s m) state m) (find-s s m))))))

(disable rv$) ,
(disable rv)

(prove-lemma sv$-rewrite-1 (rewrite)
(implies (and (seqp m)

(subsetp s (signals m))

(listp s)

(not (equal m (dff))))
(equal (sv$ ’list s v state m)
{cons (av$ t (car s) v state m)

(sv$ 'list (cdr s) v state m)))))

(prove-lemma sv§-rewrite-2 (rewrite)
(implies (and (seqp m)
(nlistp s)
(not (equal m (dff))))
(equal (sv$ ’list s v state m) ())))

(prove-lemma sv$-revrite-3 (rewrite)
(implies (and (seqp m)
(not (equal m (dff)))
(member s (signals m)))
(equal (sv$ t 8 v state m)
(if (member s (i m))
(lockup 8 (cddr (i m)) v)
(if (lessp (index s (1o m)) (q m))
(rv s state m)
(cv (find-o 5 m) (sv$ ’list (find-1i s m) v state m) (find-s 5 m))))))
((disable member)))

(disable sv§)

(prove-lenmma next$-rewrite-1 (rewrite)
(implies (listp m)
(equal (next$ ’list v state m)
(cons (next (car v) (car state) (car m))
(next$ ’list (cdr v) (cdr state) (cdr m))))))

(prove-lemma next$-rewrite-2 (rewrite)
(implies (nlistp m)
(equal (next$ ’list v state m) ())))

(prove-lemma next$-rewrite-3 (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(equal (next$ t v state m)
(if (equal (q m) 1)
(next (svl (car (1li m)) v state m) state (car (s m)))

112

(next$ ’list

(svll (firstn (q m) (1i m)) v state m)
state

(tirsta (g m) (s m))))))
((disable dff)))

(disable next$)
(disable next$)

(prove-lemma q$~rewrite-1 (rewrite)
(implies (listp mods)
(equal (q$ mods)
(if (combp (car mods))
0 .
(add1 (q$ (cdr mods)))))))

(prove-lemma q$-rewrite-2 (revrite)
(implies (nlistp meds)
(equal (q$ mods) 0)))

(disable g$)
(disable q)

(prove-lemma statep$-rewrite-1 (rewrite)
(implies (listp m)
(equal (statep$ ’list state m)
(and (statep (car state) (car m))
(statep$ ’'list (cdr state) (cdr m))))))

(prove-lemma statep$-rewrite-2 (revrite)
(implies (alistp m)
(equal (statep$ ’'list state m)
(equal state ()))))

(prove-lemma statep$-revrite-3 (rewrite)
(implies (and (modulep m) (structp m) (not (equal m (dff))))
(equal (statep$ t state m)
(it (equal (q m) 1)
(statep state (car (s m)))
(statep$ ’list state (firstn (q m) (s m)))))))

(prove-lemma statep-dff-revrite (rewrite)
(equal (statep state (dff))

(boolp state))
((disable boolp)))

(disable statep$)
(disable statep)

(prove-lemma regp-rewrite (rewrite)
(implies (seqp m)
(equal (regp s m)
(it (equal m (dff))
(member 3 (o m))
(and (lessp (index s (1o m)) (q m))
(regp (find-o s m) (find-s s m)))))))

113

(disable Tegp)

(prove-lemma dsmin$-rewrite-1 (rewrite)
(implies (and (seqp m) (subsetp s (signals m)) (not (equal m (dff))) (listp s))
(equal (dsmin$ ’list s m)
(emin (dsmin$ t (car s) m)

(dsmin$ ’'list (cdr s) m)))))

(prove-lenma dsmin$-rewrite-2 (revrite)
(implies (and (segp m) (subsetp s (signals m)) (not (equal m (dff)}) (nlistp s))
(equal (dsmin$ ’list s m) 1)))

(prove-lemma dsmin$-revrite-3 (revrite)
(implies (and (seqp m)
(member s (signals m))
(not (member s (i m)))
(not (equal m (dff))))
(equal (dsmin$ t s m)
(if (lessp (index s (lo m)) (q m))
(dsmin (find-o s m) (find-s s m))
(eplus (dcmin (find-o s m) (find-s s m))
(dsmin$ ’list (find-1i s m) m))))))

(prove-lemma dsmin$-rewrite-4 (revrite)
(implies (and (member s (signals (dff)))
(not (member s (i (df£)))))
(equal (dsmin$ t s (dff)) 4000)))

(prove-lemma dsmin-rewrite (rewrite)
(equal (dsmin s m) (dsmin$ t s m})))

(disable dsmin$)
(disable dsmin)

(prove-lemma dff-dsmin-q (revrite)
(equal (dsmin ’q (dff)) 4000)
((enable *{=dff si»nand? #islo +1#i *1»nand3 *i*not1)))

(prove-lemma dff-dsmin-qn (rewrite)
(equal (dsmin ’qn (dff)) 4000)
((enable »1sdff #isnand2 *islo *1#i *isnand3 *1#not1)))

(prove~-lemma dsmax$-rewrite-1 (revrite}
(implies (and (seqp m) (subsetp s (signals m)) (not (equal m (dff))) (listp s))
(equal (dsmax$ ’'list s m)
(emax (dsmax$ t (car s) m)

(dsmax$ ’list (cdr s) m)))))

(prove-lemma dsmax$-rewrite-2 (rewrite)
(implies (and (seqp m) (subsetp s (signals m)) (not (equal m (dff))) (nlistp s))
(equal (dsmax$ ’list s m) 0)))

(prove-lemma dsmax$-rewrite-3 (revrite)
(implies (and (seqp m)

(member s (signals m))

(not (member s (i m)))

(not (equal m (dff))))

114

(equal (dsmax$ t s m)
(if (lessp (index s (lo m)) (q m))
(dsmax (find-o s m) (find-s s m))
(eplus (dcmax (find-o s m) (find-s s m))
(dsmax$ 'list (find-1i a m) m))))))

(prove-lemma dsmax$-rewrite-4 (rewrite)
(implies (and (member s (signals (dff)))
(not (member s (i (dff)))))
(equal (dsmax$ t s (dff)) 6000)))

(prove-lemma dsmax-revrite (rewrite)
(equal (dsmax s m) (dsmax$ t s m)))

(disable dsmax$)
(disable dsmax)

(prove-lemma dff-dsmax-q (rewrite)
(equal (dsmax ‘'q (dff)) 6000)
((enable *1%dff *isnand? *1¢lo si%i *{+nand3 *lsnotl)))

(prove-lemma dff-dsmax-qn (rewrite)
(equal (dsmax ’qn (dff)) 6000)
((enable +1%dff s1snand? s1slo s1+i 1snand3 sienot1)))

(prove-lemma setup-rewrite (rewrite)
(equal (setup s m) (setup$ 0 s m)))

(disable setup)

(prove-lemma dff-setup-rst (revrite)
(equal (setup ’rst (dff)) 8000))

(prove-lemma dff-setup-d (rewrite)
(equal (setup ’d (dff)) 6000))

(prove-lemma setup$-revrite-1 (rewrite)

(implies (and (seqp m) (mot (equal m (dff}))))

(equal (setup$ 0 x m)

(emax (setup$ 2
(collect-1i x (firstn (q m) (1i m)) (firstn (q m) (s m)))
(collect-lo x (firstn (q m) (1i m)) (firstn (q @) (s m))))
(setup$ 5
(setup$ 4
(collect-lo x (cdrn (q m) (1i m)) (cdrn (q m) (1o m)))
m)
(collect-lo x (cdrn (q m) (1i m)) (edrn (qm) (s m)))))N

(prove-lemma setup$-rewrite-2 (rewrite)
(implies (listp x)
(equal (setup$ 1 x m)
(emax (setup (car x) m)

(setup$ 1 (cdr x) m)))))

(prove-lemma setup$-rewrite-3 (revrite)
(implies (nlistp x)

115

(equal (setup$ 1 x m) 0)))

(prove-lemma setup$-reurite-4 (reurite)
(implies (listp m)
(equal (setup$ 2 x m)
(emax (setup$ 1 (car x) (car m))
(setup$ 2 (cdr x) (cdr m))))))

(prove-lemma setup$-rewrite-5 (revrite)
(implies (nlistp m)
(equal (setup$ 2 x m) 0)))

(prove-lemma setup$-revwrite-6 (revrite)
(implies (1listp x)
(equal (setup$ 3 x m)
(cons (setup (car x) m)

(setup$ 3 (cdr x) m)))))

(prove-lemma setup$-rewrite-7 (rewrite)
(implies (nlistp x)
(equal (setup$ 3 x m) ())))

(prove-lemma setup$-revrite-8 (revrite)
(implies (listp x)
(equal (setup$ 4 x m)
(cons (setup$ 3 (car x) m)

(setup$ 4 (cdr x) m)))))

(prove-lemma setup$-rewrite-9 (rewrite)
(implies (nlistp x)
(equal (setup$ 4 x m) (3)))

(prove-lemma setup$-revrite-10 (rewrite)
(implies (listp m)
(equal (setup$ 5 x m)
(emax (setup-comb (o (car m)) (car x) (car m})
(setup$ 5 (cdr x) (cdr m)IN))

(prove-lemma setup$-revrite-11 (rewrite)
(implies (nlistp m)
(equal (setup$ 5 x m) 0)))

(disable setup$)

(prove-lemma setup-comb-rewrite-1 (revrite)
(implies (listp sigs)
(equal (setup-comb sigs setups m)
(it (zerop (car setups))
(setup-comb (cdr sigs) (cdr setups) m)
(emax (eplus (dcmax (car sigs) m) (car setups))
(setup-comb (cdr sigs) (cdr setups) m))))))

(prove-lemma setup-comb-rewrite-2 (rewrite)

(implies (nlistp sigs)
(equal (setup-comb sigs setups m) 0)))

(prove-lemma collect-i-revrite-1 (revrite)
(implies (listp 1i}

116

(equal (collect-i s 1i i)
(if (equal s (car 1i))
(cons (car i) (collect-i s (edr 1i) (edr i)))
(collect-i 8 (cdr 1i) (edr i))))))

(prove-lemma collect-i-rewrite-2 (revrite)
(implies (nlistp 1i)
(equal (collect-i s 1i i) ())))

(prove-lemma collect-li-rewrite-1 (rewrite)
(implies (listp 1i)
(equal (collect-1li s li m)
(it (member s (car 1i))
(cons (collect-i 8 (car 1i) (i (car m)))
(collect-1i s (cdr 1li) (cdr m)))
(collect-1i s (cdr 1i) (cdr m))))))

(prove-lemma collect-li-rewrite-2 (revrite)
(implies (nlistp 1i)
(equal (collect-1i s li m) ())))

(prove-lemma collect-lo-rewrite-1 (revrite)
(implies (listp 1i)
(equal (collect-lo s li lo)
(it (member s (car 1i))
(cons (car lo) (collect-lo s (cdr 1i) (cdr 1lo)))
(collect-lo s (cdr 1i) (cdr 10))))))

(prove-lemma collect-lo-rewrite-2 (rewrite)
(implies (nlistp 1i)
(equal (collect-lo s 1i lo) ())))

(prove-lemma high-rewrite (rewrite)
(equal (high m) (high$ t m)))

(disable high)

(prove-lemma high$-rewrite-1 (rewrite)
(implies (listp m)
(equal (high$ ’'list m)
(max (high (car m))
(high$ ’list (cdr m))))))

(prove-lemma high$-rewrite-2 (rewrite)
(implies (nlistp m)
(equal (high$ 'list m) 0)))

(prove-lemma high$-revrite-3 (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(equal (high$ t m)
(high$ ’list (firsta (q m) (s m))))))

(prove-lemma dff-high-reurite (rewrite)
(equal (high (dff)) 4000))

(disable high$)

(prove-lemma low-revrite (revrite)
(equal (low m) (low$ t m)))

117

(disable low)

(prove-lemma low$-rewrite-1 (rewrite)
(implies (listp m)
(equal (low$ ’list m)
(max (low (car m))
(low$ 'list (cdr m))))))

(prove-lemma low$-reurite-2 (rewrite)
(implies (nlistp m)
(equal (low$ ‘list m) 0)))

(prove-lemma low$-rewrite-3 (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(equal (low$ t m)
(low$ ’list (firstn (q m) (s m))))))

(prove-lemma dff-low-rewrite (rewrite)
(equal (low (dff)) 6000))

(disable low$)

(prove-lemma setups-plus-delays-rewrite-1 (rewrite)
(implies (listp outs)
(equal (setups-plus-delays setups outs sub)
(max (plus (dsmax (car outs) sub)
(car setups))
(setups-plus-delays (cdr setups) (cdr outs) sub)))))

(prove-lemma setups-plus-delays-rewrite-2 (rewrite)
(implies (nlistp outs)
(equal (setups-plus-delays satups outs sub) 0)))

(prove-lemma p3-rewrite-1 (revrite)
(implies (listp s)
(equal (p3 s lo m)
(max (setups-plus-delays (setup$ 3 (car lo) m) (o (car s)) (car s))
(p3 (cdr 8) (cdr 1lo) m)))))

(prove-lemma p3-rewrite-2 (rewrite)
(implies (nlistp s)
(equal (p3 5 1o m) 0)))

(prove~lemma per-rewrite (rewrite)
(equal (per m) (per$ t m)))

(disable per)

(prove-lemma per$-rewrite-i (reurite)
(implies (listp m)
(equal (per$ ’list m)
(max (per (car m))
(per$ ’list (cdr m))))))

(prove-lemma per$-rewrite-2 (rewrite)

" (implies (nlistp m)
(equal (per$ ’list m) 0)))

118

(prove-lemma per-dff-reurite (rewrite)
(equal (per (dff)) 10000))

(prove-lemma per$-revrite-3 (rewrite)
(implies (and (seqp m) (not (equal m (dff))))
(equal (per$ t m)
(max (per$ ’list (firstn (q m) (s m)))
(max (setup$ 3 (cdr (i m)) m)
(p3 (firstn (g m) (s m)) (firsta (g m) (lo m)) m))))))

(disable per$)

iiFinally, we define the following macro, which we use to define
iisequential modules and derive their properties:

(defmacro defseq (m q i o krest suba)

(let ((s (make-s subs)) (1i (make-li subs)) (lo (make-lo subs)))
‘(and (defn ,m ()
(list ’struct ’,i ’,o (list ,@8) ’,1i ’,lo))

(print-and-prove ,(hyphen m 'type) (rewrite)
(equal (type (,m)) ’struct)
((enable type)))

(print-and~prove ,(hyphen m ’i) (rewrite)
(equal (i (,m)) ’,i)
((enable i)))

(print-and-prove ,(hyphen m 'o) (rewrite)
(equal (o (,m)} ’,0)
((enable o)))

(print-and-prove ,(hyphen m ’s) (rewrite)
(equal (s (,m)) (list ,@s))
((enable 8)))

(print-and-prove ,(hyphen m ’li) (rewrite)
(equal (1i (,m)) ’,1i)
({enable 1i)))

(print-and-prove ,(hyphen m ’lo) (rewrite)
(equal (lo (,m)) ’,lo)
((enable lo)))

(print-and-prove ,(hyphen m ’not-dff) (rewrite)
(not (equal (,m) (dff)))
((enable dff)))

(disable ,m)

(disable ,(ex m))

(print-and-prove ,(hyphen m ’modulep) (revrite)
(modulep (,m))
((use (modulep (m (,m))))))

(print-and-prove ,(hyphen m ’q) (rewrite)
(equal (q (,m)) ,q)
((use (q (m (,m))))))

(print-and-prove ,(hyphen m ’'sdepth) (rewrite)
(sdepth (,m) ,q)
((use (sdepth (m (,m)) (q ,q)))))

(print-and-prove ,(hyphen m ’seq) (revrite)
(seqp (,m))
((use (seqp (m (,m)))NNN

HA ARG L LA L L A E Il Al P Py P T e R P T I TS
i BPN

e AL L L L Ll P R R A L R T R L T R T T P N T T LTI T ey

119

;:We illustrate our methodology with a pair of circuits, RCVR and SNDR,
;ivhich achieve asynchronous communication via the biphase mark protocol.
;;The definitions of these circuits are presented below.

;;Each combinational component is defined via DEFCOMB. For each of its
;;outputs, three lemmas are proved, establishing the values of the functioms
; sRV, DCMIN, and DCMAX.

;;Each sequential component is defined via DEFSEQ. For each output, a lemma
;;is proved pertaining to RV. For each input, a lemma is proved, giving the
;;setup time. Other lemmas give the period and characterize the behavior of
; ;STATEP and NEXT:

(defseq cdff 1
(clk rst clear d) (q qn)
(dff (clk rst den) (q qn))
(not1 (clear) (cm))
(and2 (d cn) (den)))

(prove-lemma cdff-statep (rewrite)
(equal (statep state (cdff))
(boolp state))
((use (statep (m (cdf1))))))

(prove-lemma rv-cdff-q (rewrite)
(equal (rv 'q state (cdff)) state))

(prove-lemma rv-cdff-qn (rewrite)
(equal (rv ’qn state (cdff)) (not state)))

(prove-lemma next-cdff (rewrite)
(implies (svecp v (cdff))
(equal (next v state (cdff))
(it (car v) f (cadr v))))
((use (next (m (cdf£))))))

(prove~lemma cdff-setup-rst (rewrite)
(equal (setup ’rst (cdff)) 8000))

(prove-lemma cdff-setup-clear (rewrite)
(equal (setup ’clear (cdff)) 10000))

(prove-lemma cdff-setup-d (revrite)
(equal (setup 'd (cdff)) 8000))

(prove-lemma cdff-per (rewrite)
(equal (per (cdff})) 10000))

(defseq edff 1
(clk rst enable d) (q qn)
(dff (clk rst s4) {(q qn))
(not1 (enable) (s1))
(nand2 (s1 q) (s2))
(nand2 (d enable) (s3))
(nand2 (s2 s3) (s4)))

(prove-lemma edff-statep (rewrite)

120

(equal (statep state (edff))
(boolp state))
((use (statep (m (edff))))))

(prove-lemma rv-edff-q (rewrite)
(equal (rv ’q state (edff)) atate))

(prove-lemma rv-edff-qn (rewrite)
(equal (rv ’qn state (edff)) (not state)))

(prove-lemma next-edff (rewrite)
(implies (and (svecp v (edff))
(statep state (edff)))

(equal (next v state (edff))
(if (car v) (cadr v) state)))
((use (next (m (edff)))

(statep (m (edf£))))))

(prove-lemma edff-setup-rst (rewrite)
(equal (setup ’rst (edff)) 8000))

(prove-lemma edff-setup-enable (reurite)
(equal (setup ’enable (edff)) 12000))

(prove-lemma edff-setup-d (rewrite)
(equal (setup ’d (edff)) 10000))

(prove-lemma edff-per (rewrite)
(equal (per (edff)) 16000))

(defseq ecdff 1
(clk rst clear enable d) (q qn)
(dff (clk rst s5) (q qn))
(notl (enable) (s1))
(notl (clear) (s2))
(nand3 (q s1 82) (s3))
(nand3 (d s2 enable) (a4))
(nand2 (83 s4) (85)))

(prove-lemma ecdff-statep (rewrite)
(equal (statep state (ecdff))
(boolp state))
((use (statep (m (ecdff))))))

(prove-lemma rv-ecdff-q (rewrite)
(equal (rv ’q state (ecdff)) state))

(prove~lemma rv-ecdff-qn (rewrite)
(equal (rv ’qn state (ecdff)) (not state)))

(prove-lemma next-ecdff (rewrite)
(implies (and (svecp v (ecdff))
(statep state (ecdff)))
(equal (next v state (ecdff))
(if (car v) f (if (cadr v) (caddr v) state))))
((use (next (m (ecdff)))
(statep (m (ecdf£))))))

121

(prove-lemma ecdff-setup-rst (rewrite)
(equal (setup ’rst (ecdff)) 8000))

(prove-lemma ecdff-setup-clear (rewrite)
(equal (setup ’clear (ecdff)) 12000))

(prove-lemma acdff-setup-enable (revrite)
(equal (setup ’enable (ecdff)) 12000))

(prove-lemma ecdff-setup-d (revrite)
(equal (setup ’d (ecdff)) 10000))

(prove-lemma ecdff-per (rewrite)
(equal (per (ecdff)) 16000))

(defseq port3 i
(clk rst shift sin load din) (q)
(edff (clk rst s3 s4) (q qu))
(nand2 (din load) (s1))
(nand2? (sin shift) (s2))
(or2 (load shift) (s3))
(nand2 (si s2) (s4)))

(prove-lemma port3-statep (rewrite)
(equal (statep state (port3))
(boolp state))
((use (statep (m (portd))))))

(prove-lemma rv-port3-q (revrite)
(equal (rv ’q state (portd)) state))

(prove-lemma next-port3-1 (rewrite)
(implies (and (svecp v (port3))

(statep state (portd))

(not (car v)))

(equal (next v state (port3))
(if (caddr v) (cadddr v) state)))
((use (next (m (port3)))

(statep (m (port3))))))

(prove-lemma next-port3-2 (rewrite)
(implies (and (svecp v (port3))

(statep state (port3d))

(not (caddr v)))

(equal (next v state (port3))
(it (car v) (cadr v) state)))
((use (next (m (port3)))

(statep (m (port3))))))

(prove-lemma port3-setup-rst (rewrite)
(equal (setup ’rst (port3)) 8000))

(prove-lemma port3-setup-shift (rewrite)
(equal (setup ’'shift (port3)) 14000))

(prove-lemma port3-setup-sin (rewrite)
(equal (setup ’sin (port3)) 14000))

122

(prove~lemma
(equal (set

(prove-lemma
(equal (set

(prove-lemma
(equal (per

(defseq shift
(clk rst lo
(q0 q1 q2 q
(port3 (clk
(port3 (clk
(port3 (clk
(port3 (clk
(port3 (clk
(port3 (clk
(port3 (clk
(port3 (clk

(prove-lemma
(equal (sta

(bvpn state
((use (stat
(disable b

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

(prove-lemma
(equal (rv

- (prove-lemma
(equal (rv

(defn shift (
(it (listp
(cons s

(9))]

(prove-lemma
(implies (b

port3-setup-load (rewrite)
up ’load (port3)) 14000))

port3-setup-din (rewrite)
up 'din (port3)) 14000))

port3-per (revrite)
(port3)) 16000))

88

ad shift sin dO d1 d2 d3 d4 d5 dé d7)
3 q4 q5 q6 q7)

rst shift sin load d0) (q0))
rst shift q0 load d1) (q1))
rst shift q1 load d2) (q2))
rst shift q2 load d3) (q3))
rst shift q3 load d4) (q4))
rst shift q4 load dS) (q5))
rat shift q5 load d6) (q6))
rst shift q6 load d7) (q7)))

shift8-statep (rewrite)
tep state (shifts))

8))

ep (m (shift8))))
oo0lp)))

rv-shift8-q0 (rewrite)
'q0 state (shift8)) (car state)))

rv-shift8-q1 (rewrite)
'ql state (shift8)) (cadr state)))

rv-shift8-q2 (rewrite)
’q2 state (shift8)) (caddr state)))

rv-shift8-q3 (rewrite)
’q3 state (shift8)) (cadddr state)))

rv-shift8-q4 (rewrite)
’q4 state (shift8)) (caddddr state)))

rv-shift8-q5 (rewrite)
'qS state (shift8)) (cadddddr state)))

rv-shift8-q6 (rewrite)
’q6 state (shift8)) (caddddddr state)))

rv-shift8-q7 (rewrite)
'q7 state (shift8)) (cadddddddr state)))

sin 1)

1)
in (shift (car 1) (ecdr 1)))

shift-revrite-1 (rewrite)
oolp (car 1))

123

(equal (shift s 1)
(cons 8 (shift (car 1) (edr 1))))))

(prove-lemma shift-rewrite-2 (rewrite)
(implies (alistp 1)
(equal (shift s 1) (O)))

(disable shift)

(prove-lemma cons-car-nil (revrite)
(implies (equal (cdr u) ()
(equal (cons (car u) (O) w))

(disable cons-car-nil)

(prove-lemma next-shift8-1 (rewrite)
(implies (and (svecp v (shift8))
(statep state (shift8))
(not (car v)))
(equal (next v state (shift8))
(it (cadr v) (shift (caddr v) state) state)))
((use (next (m (shift8)))
(statep (m (shift8))))
(enable cons-car-nil)
(disable boolp)))

(prove-lemma next-shift8-2 (rewrite)
(implies (and (svecp v (shift8))

(statep state (shift8))

(not (cadr v)))

(equal (next v state (shift8))
(it (car v) (edddr v) state)))
((use (next (m (shift8)))

(statep (m (shift8))))

(enable cons-car-mil)

{disable boolp)))

(prove-lemma shiftB-setup-rst (rewrite)
(equal (setup ’'rst (shift8)) 8000))

(prove-lemma shift8-setup-shift (revrite)
(equal (setup ’shift (shift8)) 14000))

(prove-lemma shift8-setup-sin (rewrite)
(equal (setup ’sin (shift8)) 14000))

(prove-lemma shift8-setup-load (rewrite)
(equal (setup 'load (shift8)) 14000))

(prove-lemma shift8-setup-dO (revrite)
(equal (setup ’d0 (shift8)) 14000))

(prove-lemma shiftB-setup-d1 (rewvrite)
(equal (setup ’di (shift8)) 14000))

(prove-lerma shift8-setup-d2 (revrite)
(equal (setup ’d2 (shiftB)) 14000))

(prove-lemma shift8-setup-d3 (rewrite)

124

(equal (setup ’d3 (shift8)) 14000))

(prove-lemma shift8-setup-d4 (rewrite)
(equal (setup ’d4 (shift8)) 14000))

(prove-lemma shift8-setup-d5 (revrite)
(equal (setup 'dS (shift8)) 14000))

(prove-lemma shift8-setup-d6é (revrite)
(equal (setup ’d6 (shift8)) 14000))

(prove-lemma shift8-setup-d7 (revrite)
(equal (setup ’d7 (shift8)) 14000))

(prove-lemma shift8-per (reurite)
(equal (per (shift8)) 20000))

(defcomb comp5 (cO b0 c1 bl c2 b2 c3 b3 c4 bd) (match)
(xor2 (c0 b0) (s1))
(xor2 (ci b1) (s2))
(xor2 (c2 b2) (s3))
(xor2 (c3 b3) (s4))
(xor2 (c4 ba) (s5))
(norS (31 s2 s3 s4 s5) (match)))

(prove-lemma cv-compS (rewrite)
(Qet ((cO (car v)) (b0 (cadr v))
(el (caddr v)) (b1 (cadddr v))
(c2 (caddddr v)) (b2 (cadddddr v))
(c3 (caddddddr v)) (b3 (cadddddddr v))
(c4 (caddddddddr v)) (b4 (cadddddddddr v)))
(implies (cvecp v (compS))
(equal (cv ’match v (compS))
(equal (list b0 bl b2 b3 b4) (list cO cl c2 c3 c4)))))
((disable boolp)))

(defseq count3 3
(clk rst emable) (q0 q1 q2)
(edff (clk rst enable qn0) (q0 gn0))
(edff (clk rst enable s3) (q1 qni))
(edff (clk rst enable 52) (q2 gqn2))
(and2 (q0 q1) (s1))
(xor2 (81 q2) (82))
(xo0r2 (q0 q1) (s3)))

(prove-lemma countp-statep (rewrite)
(equal (statep state (count3))
(bvpn state 3))
((use (statep (m (count3))))
(disable boolp)))

(prove-lemma rv-count3-q0 (revrite)
(equal (rv ’q0 state (count3)) (car state)))

{prove-lemma rv-count3-ql (revrite)
(equal (rv ’ql state (count3)) (cadr state)))

125

(prove-lemma rv-count3-q2 (rewrite)
(equal (rv ’q2 state (count3)) (caddr state)))

(defn modinc (n)
(if (listp n)
(it (car n)
(cons t (modinc (cdr n)))
(cons t (cdr n)))
n))

(prove-lemma modinc-rewrite-1 (rewrite)
(implies (not (car mn))
(equal (modinc n)
(coms t (cdr n)))))

(prove-lemma Modinc-rewrite-2 (rewrite)
(implies (and (boolp (car n)) (car n))
(equal (modinc n)
(cons f (modinc (cdr n})))))

(prove~lemma modinc-rewrite-3 (rewrite)
(implies (nlistp n)
(equal (modinc n) n)))

(disable modinc)

(prove-lemma next-count3 (revrite)
(implies (statep state (count3))
(equal (next v state (countd))
(it (car v)
(modinc state)
state)))
((use (next (m (count3))))))

(prove-lemma count3-setup-rst (rewrite)
(equal (setup ’rst (count3)) 8000))

(prove-lemma count3-setup-enable (rewrite)
(equal (setup ’enable (count3)) 12000))

(prove-lemma count3-per (rewrite)
(equal (per (count3)) 20000))

(defseq count5 5

(clk rst clear enable) (q0 qi g2 q3 q4)
(ecdff (clk rat clear enable gn0) (q0 qno0))
(ecdff (clk rat clear enable x1) (ql gnl))
(ecdf? (clk rst clear enable x2) (q2 qn2))
(ecdff (clk rst clear enable x3) (g3 qn3))
(ecdff (clk rst clear enable x4) (q4 qn4))
(and2 (q0 q1) (al))

(and2 (a1 q2) (a2))

(and2 (a2 q3) (a3))

(xor2 (q0 q1) (x1))

(xor2 (q2 ai) (x2))

(xor2 (g3 a2) (x3))

(xor2 (q¢ a3) (x4)))

(prove-lemma count5-statep (rewrite)

126

(equal (statep state (count5))

(bvpn state 5))

((use (statep (m (count5))))
(disable boolp)))

(prove-lemma rv-count5-q0 (rewrite)
(equal (rv ’q0 state (count5)) (car state)))

(prove-lemma rv-count5-ql (revrite)
(equal (rv ’ql state (countS)) (cadr state)))

(prove-lemma rv-count$5-q2 (rewrite)
(equal (zv ’q2 state (count5)) (caddr state)))

(prove-lemma rv-count5-q3 (rewrite)
(equal (rv ’'q3 state (count5)) (cadddr state)))

(prove-lemma rv-count5-q4 (revrite)
(equal (rv ’q4 state (count5)) (caddddr state)))

(prove-lemma next-count5 (rewrite)
(implies (statep state (count$))
(equal (next v state (count5))
(if (car v)
(listn 5 f)
(if (cadr v)
(modinc state)
state))))
((use (next (m (count5))))))

(prove-lemma countS5-setup-rst (rewrite)
(equal (setup ’rst (count5)) 8000))

(prove-lemma count5-setup-clear (rewrite)
(equal (setup ’clear (count5)) 12000))

(prove-lemma count5-setup-enable (rewrite)
(equal (setup ’enable (count5)) 12000))

(prove-lemma countS-per (rewrite)
(equal (per (countS)) 24000))

(defseq rcount 2
(clk rst stop start) (bit)
(cdff (clk rst stop si) (q qn))
(count5 (clk rst stop q) (g0 q1 q2 q3 q4))
(or2 (start q) (s1))
(t0 O ()
(0 OO ()
(comp5 (t q0 f q1 f q2 t q3 f q4) (bit)))

(prove-lemma rcount-statep (rewrite)
(equal (statep state (rcount))
(and (boolp (car state))
(bvpn (cadr state) 5)
(equal (cddr state) ())))
((use (statep (m (rcount))))
(disable boolp)))

127

(prove-lemma rv-rcount-bit (rewvrite)
(implies (statep state (rcount))
(equal (rv ’bit state (rcount))
(equal (cadr state) (list t f £ t £))))
((disable bvpn boolp)))

(prove-lemma next-rcount (rewrite)
(implies (statep state (rcount))
(equal (next v state (rcount))

(it (car v)
(1ist £ (listn § 1))
(list (if (cadr v) t (car state))
(if (car state)
(modinc (cadr state))
(cadr state))))))
((use (next (m (rcount)))
{boolp (x (car state))))
(disable boolp bvpn-revrite-1 bvpn-revrite-2))})

(prove-lemma rcount-setup-rst (rewrite)
(equal (setup ’rst (rcount)) 8000))

(prove-lemma rcount-setup-stop (rewrite)
(equal (setup ’stop (rcount)) 12000))

(prove-lemma rcount-setup-start (revrite)
(equal (setup ’start {rcount)) 10000))

(prove-lemma rcount-per (rewrite)
(equal (per (rcount)) 24000))

(defseq scount 2
(clk rst stop bit) (mark code)
(cdff (clk rst stop s1) (q qn))
(countS (clk rst s2 q) (q0 ql q2 q3 q4))
(or2 (bit q) (s1))
(or2 (stop bit) (a2))
(t0o O)
(o () (N
(compS (f q0 f q1 t q2 £ q3 f q4) (mark))
(comp5 (t q0 f q1 f q2 f q3 t q4) (code)))

(prove-lemma scount-statep (revrite)
(equal (statep atate (scount))
(and (boolp (car state))
(bvpn (cadr state) 5)
(equal (cddr state) (1))
((use (statep (m {scount))))
(disable boolp)))

(prove-lemma rv-scount-mark (rewrite)
(implies (statep state (scount))
(equal (rv ’mark state (scount))
(equal (cadr state) (list £ £ t f 1))))
((disable bvpn boolp)))

(prove-lemma rv-scount-code (rewrite)

128

(implies (statep state (scount))

(equal (rv ’code state (scount))
(equal (cadr state) (list t f f f t))))
((disable bvpn boolp)))

(prove-lemma next-scount (rewrite)
(implies (statep state (scount))
(equal (next v state (scount))
(it (car v)
(list £ (listn 5 1))
(it (cadr v)
(list ¢t (listn 5 £))
(if (car state)
(1ist (car state) (modinc (cadr state)))
state))))) .
((use (next (m (scount)))
(boolp (x (car state))))
(disable boolp bvpn-rewrite-1 bvpn-rewrite-2)))

(prove-lemma scount-setup-rst (rewrite)
(equal (setup ’rat (scount)) 8000))

(prove-lemma scount-setup-stop (rewrite)
(equal (setup ’stop (scount)) 14000))

(prove-lemma scount-setup-bit (rewrite)
(equal (setup ‘bit (scount)) 14000))

(prove-lemma scount-per (rewrite)
(equal (per (scount)) 24000))

(defseq revr §
(clk rst sin) (dO d1 d2 d3 d4 d5 dé d7 done)
(edff (clk rst bit n1) (q qn))

(rcount (clk rst bit n2) (bit))

(count3 (clk rst bit) (g0 q1 q2))

(shift8 (clk rst f bit x f £ £ £ £ £ ¢ f) (d0 di d2 d3 d4 d5 d6 d7))
(dff (clk rst a) (done donen))

(not1 (sin) (n1))

(not1 (x) (n2))

(xor2 (sin q) (x))

(and4 (q0 q1 q2 bit) (a))

0 O (H)N

(prove-lemma rcvr-statep (rewrite)
(equal (statep state (rcvr))
(and (boolp (car state))
(statep (cadr state) (rcount))
(bvpn (caddr state) 3)
(bvpn (cadddr state) 8)
(boolp (caddddr state))
(equal (cdddddr state) ())))
((use (statep (m (rcvr))))
(disable boolp bvpn-rewrite-1 bvpn-rewrite-2)))

(prove-lemma rv-revr-dO (rewrite)

(implies (statep state (rcvr))
(equal (rv ’d0 state (rcvr))

129

il ou

(caadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-dl (rewrite)
(implies (statep state (rcvr))
(equal (rv ’dl state (rcvr))

(cadadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d2 (rewrite)
(implies (statep state (rcvr))
(equal (rv ’d2 state (rcvr))

(caddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d3 (revrite)
(implies (statep state (rcvr))
(equal (rv ’d3 state (rcvr))

(cadddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d4 (revrite)
(implies (statep state (rcvr))
(equal (rv ’d4 state (rcvr))

(caddddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d5 (rewrite)
(implies (statep state (rcvr))
(equal (rv 'dS state (rcvr))
(cadddddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d6 (rewrite)
(implies (statep state (rcvr))
(equal (rv ’'dé state (rcvr))
(caddddddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-d7 (rewrite)
(implies (statep state (rcvr))
(equal (rv *d7 state (rcvr))
(cadddddddadddr state)))
((disable bvpn boolp)))

(prove-lemma rv-rcvr-done (rewrite)
(implies (statep state (rcvr))
(equal (rv ’dome state (rcvr))
(caddddr state)))
((disable bvpn boolp)))

(prove-lemma next-rcvr-i (rewrite)

(implies (and (statep state (rcvr))
(svecp v (rcvr))
(equal (cadr state) (list f (listn § 1)))
(equal (caddddr state) 1))

(equal (next v state (rcvr))

(it (equal (car v) (car state))

(list (car state)

130

(list t (listn 5 ?))
(caddr state)
(cadddr state)
b))
state)))
((use (next (m (rcvr)))
(boolp (x (car state))))
(disable boolp bvpn-rewrite-i bvpn-revrite-2)
(enable cons-car-nil)))

(prove-lemma bvp3-t (reurite)
(implies (and (bvpn v 3)

(car v)

(cadr v)

(caddr v)) .
(equal (equal v (list t t t)) t)))

(prove-lemma naxt-rcvr-2 (rewrite)
(implies (and (statep state (rcvr))
(svecp v (revr))
(equal (caadr state) t)
(equal (caddddr state) f))
(equal (next v state (rcvr))
(it (equal (cadadr state) (list t f f t £))
(list (not (car v))
(list f (listn 5 £))
(modinc (caddr state))
(shift (not (equal (car v) (car state))) (cadddr state))
(equal (caddr state) (list t t t)))
(list (car state)
(list t (modinc (cadadr state)))
(caddr state)
(cadddr state)
m»
((use (next (m (rcvr)))
(boolp (x (car state))))
(disable boolp bvpn-rewrite-1 bvpn-rewrite-2)
(enable cons-car-nil)))

(prove-lemma rcvr-setup-rst (rewrite)
(equal (setup ’rst (rcvr)) 8000))

(prove-lemma rcvr-setup-sin (rewrite)
(equal (setup ’sin (rcvr)) 16000))

(prove-lemma rcvr-per (rewrite)
(equal (per (rcvr)) 24000))

(defseq sndr 4
(clk rst send d0 d1 d2 d3 d4 d§ d6 d7) (sout)
(scount (clk rst a4 02) (mark code))
(shift8 (clk rst send code f d0 di d2 d3 d4 d5 dé d7) (q0 q1 q2 q3 q4 q5 g6 q7))
(count3 (clk rst mark) (cO ¢i ¢2))
(edff (clk rst o3 sout) (q sout))
(or2 (code send) (02))
(and2 (q7 mark) (a2))
(and4 (mark cO cl ¢2) (a4))
(or3 (a2 send code) (03))

131

(0 O (1))

(prove-lemma sndr-statep (rewrite)
(equal (statep state (sndr))
(and (statep (car state) (scount))
(bvpn (cadr state) 8)
(bvpn (caddr state) 3)
(boolp (cadddr state))
(equal (cddddr state) (})))
((use (statep (m (sndr))))
(disable boolp bvpn-rewrite-1 bvpn-rewrite-2)})

(prove-lemma rv-sndr-sout (rewrite)
(implies (statep state (sndr))
(equal (rv ’sout state (sndr))
(not (cadddr state))))
((disable bvpn boolp)))

(prove-lemma regp-sndr-sout (rewrite)
(regp ’sout (sndr)))

(prove-lemma boolp-car-listp (rewrite)
(implies (boolp (car v))
(listp v)))

(disable boolp-car-listp)

(prove-lemma equal-list-4 (rewrite)
(implies (and (equal a (car s))
(equal b (cadr s))
(equal ¢ (caddr s))
(equal d (cadddr s))
(equal () (cddddr s)))
(equal (equal (list a b c d) s)
)

(prove-lemma next-sndr-i (rewvrite)
(implies (and (statep state (sndr))
(svecp v (sndr))
(equal (car state) (list f (listn 5 £))))
(equal (next v state (sndr))
(if (car v)
(1ist (list t (listn § 1))
(list (cadr v)
(caddr v)
(cadddr v)
(caddddr v)
(cadddddr v)
(caddddddr v)
(cadddddddr v)
(caddddddddr v))
(caddr state)
(not (cadddr state)))
state)))
((use (next (m (sndr)))
(boolp (x (cadddr state))))
(disable boolp)
(enable cons-car-nil boolp-car-listp)))

132

(prove-lemma next-sndr-2 (rewrite)
(implies (and (statep state (sndr))
(svecp v (sndr))
(not (car v))
(equal (caar state) t))
(equal (next v state (sndr))
(it (equal (cadar state) (list f f ¢t f 1)) ;mark
(if (equal (caddr state) (list t t t)) ;8th bit
(list (list f (liatn S £))
(cadr state)
(list £ £ ¢)
(it (cadddddddadr state)
(not (cadddr state))
(cadddr state)))
(list (list t (modinc (cadar state)))
(cadr state)
(modinc (caddr state))
(if (cadddddddadr state)
(not (cadddr state))
(cadddr state))))
(if (equal (cadar state) (list t £ f ¢ t)) ;code
(list (list t (listn 5 f))
(shift f (cadr state))
(caddr state)
(not (cadddr state)))
(list (1list t (modinc (cadar state)))
(cadr state)
(caddr state)
(cadddr state))))))
((use (next (m (sndr)))
(boolp (x (cadddr state))))
(disable boolp)
(enable cons-car-nil boolp-car-listp)))

(prove-lemma sndr-setup-rst (rewrite)
(equal (setup ’rst (sndr)) 8000))

(prove-lemma sndr-setup-send (rewrite)
(equal (setup ’'send (sndr)) 16000))

(prove-lemma sndr-setup-d0 (rewrite)
(equal (setup ’'d0 (sndr)) 14000))

(prove-lemma sndr-setup-dl (rewrite)
(equal (setup ’d1 (sndr)) 14000))

(prove-lemma sndr-setup-d2 (rewrite)
(equal (setup ’d2 (sndr)) 14000))

(prove-lemma sndr-setup-d3 (rewrite)
(equal (setup 'd3 (sndr)) 14000))

(prove-lemma sndr-setup-dd4 (rewrite)
(equal (setup ’d4 (sndr)) 14000))

(prove-lemma sndr-setup-dS (rewrite)
(equal (setup ’dS (sndr)) 14000))

(prove-lemma sndr-setup-d6 (rewrite)

133

(equal (setup 'd6 (sndr)) 14000))

(prove-lemma sndr-setup-d7 (rewrite)
(equal (setup ’d7 (sndr)) 14000))

(prove-lemma sndr-per (revrite)
(equal (per (sndr)) 26000))

134

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Auphic reporting burden for this collection of information 1 2stimated o average ! hour per resporse, indluding the ume far reviewing instructions, searching exting Jata »ourees,
gathering and maintaining the data needed, and compieting and reviewing the coitectign of information Send comments rn?ardmg this burden gstimate o1 3ny Jther aspect of thiy
Coilection of information, including suggestions for reducing this burgen. to Washington Headguarters Services, Directorate for information Operaticns and Repcrts, 1215 jetferson
Davis Highway, Suite 1204, Arlington, VA 22207-4302. and 1o the Office of Management and Budget, Paperwork Reduction Preject (0704-0 188), Washington, oC 235C3

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1995 Contractor Report
4, TITLE AND SUBTITLE . . 5. FUNDING NUMBERS
Specification and Verification of Gate-Level VHDL C NAS1-18878

Models of Synchronous and Asynchronous Circuits
WU 505-64-10-13

6. AUTHOR(S)

David M. Russinoff

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational Logic, Inc. REPORT NUMBER

1717 W. Sixth St., Suite 290
Austin, TX 78703-4776

9. SPONSORING /MONITORING AGENCY NAME(SV) AND ADDRESS(ES) 10. SPONSORING / MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER
Langley Research Center NASA CR-191608
Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ricky W. Butler
Final Report

12a. DISTRIBUTION ; AVAILABILITY STATEMENT 12b. DiSTRIBUTION CODE
Unclassified-Unlimited

Subject Category 62

13. ABSTRACT (Maximum 200 words)
We present a mathematical definition of a hardware description language (HDL)
that admits a semantics-preserving translation to a subset of VHDL. Our HDL
includes the basic VHDL propagation delay mechanisms and gate-level circuit
descriptions. We also develop formal procedures for deriving and verifying concise
behavioral specifications of combinational and sequential devices. The HDL and
the specification procedures have been formally encoded in the computational logic
of Boyer and Moore, which provides a LISP implementation as well as a facility
for mechanical proof-checking. As an application, we design, specify, and verify a
circuit that achieves asynchronous communcation by means of the biphase mark
protocol.

13, SUBJECT TERMS 15. NUMBER OF PAGES
. e 138

VHDL ; Formal.Verlflcatlon; Asynchronous Communication; Modeling; [Price coDt

Theorem Proving ' A07
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-280-5500 T o) Standard Form 298 (Rev. 2-89)

Prescribed by ANSY Std. 239-18
298-102

n -

Herw

[

